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Solutions to problem set 5

5.1 Pure and mixed states

a) A pure state is the most accurate description possible of a quantum system. It is represented
by a state vector |ψ〉 in Hilbert space. A mixed state is used when we do not know the exact
quantum state, but only the probabilities p1 for a set of possible states |ψi〉. It is represented by a
density matrix ρ =

∑
i pi|ψi〉〈ψi|. Mixed states also occur for composite systems in pure states.

The reduced density matrix of one component is then a mixed state when there is entanglement
between this component and the rest of the system.

b) We measure the spin in the x-direction. | →〉 is an eigenstate of σx with eigenvalue +1, which
means that we will measure spin up in x for all particles in ensamble A. For ensamble B we will
measure spin up and spin down randomly with equal probabilities.

c) We prove that the density matrices are the same:

ρB =
1

2
| ↑〉〈↑ |+ 1

2
| ↓〉〈↓ |

ρC =
1

2
| →〉〈→ |+ 1

2
| ←〉〈← |

=
1

4
(| ↑〉+ | ↓〉) (〈↑ |+ 〈↓ |) +

1

4
(| ↑〉 − | ↓〉) (〈↑ | − 〈↓ |)

=
1

2
| ↑〉〈↑ |+ 1

2
| ↓〉〈↓ |

Since the density matrices are the same will we get the same statistics for al possible measurements,
and we can distinguish the ensembles.

d) The state is |ψ〉 = 1√
2

(| ↑↓〉 − | ↓↑〉). It is clear that if we measure the first particle along the z-
axis we have equal probabilities of measuring up or down, and the second particle will collapse to
the opposite state, generating ensemble B. Ensemble C is generated by measuring the first particle
in the x-direction. to see this we rewrite |ψ〉 in terms of the states | →〉 and | ←〉. We have

| ↑〉 =
1√
2

(| →〉+ | ←〉)

| ↓〉 =
1√
2

(| →〉 − | ←〉)

which we use to get

|ψ〉 =
1

2
√

2
(| →〉+ | ←〉) (| →〉 − | ←〉)− 1

2
√

2
(| →〉 − | ←〉) (| →〉+ | ←〉)

=
1√
2

(| ←→〉 − | →←〉)
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e) Consider the case where person 1 measures spin along the z-axis and therefore prepares ensemble
B. If person 2 also measures along the z-axis, the outcomes of the two measurements will always be
perfectly anticorrelated. If instead person 1 measures x-spin and prepares ensemble C while person
2 still measures z-spin, teh results will be uncorrelated. Nothing changes if person 1 measures after
person 2.

5.2 Entanglement

a)

|ψ〉 =
1√
2

(|+ +〉+ | − −〉)

This stateis a pure state, and thus has the density matrix:

ρ̂ =
1

2
(|+ +〉〈+ + |+ | − −〉〈− − |+ |+ +〉〈− − |+ | − −〉〈+ + |)

=
1

2

∑
n,m∈{+,−}

|nn〉〈mm|

The entropy is then given by:

SA = SB = TrA (ρ̂A log ρ̂A) (= TrB (ρ̂B log ρ̂B))

where ρ̂A = TrB (ρ̂). The trace of a matrix in the product space is:

ρ̂A = TrB

1

2

∑
n,m∈{+,−}

|nn〉〈mm|

 =
1

2

∑
n,m∈{+,−}

TrB (|nn〉〈mm|)

=
1

2

∑
n,m∈{+,−}

TrB ((|n〉A ⊗ |n〉B) (〈m|A ⊗ 〈m|B))

=
1

2

∑
n,m∈{+,−}

TrB ((|n〉〈m|)A ⊗ (|n〉〈m|)B)

=
1

2

∑
n,m∈{+,−}

((|n〉〈m|)A ⊗ Tr (|n〉〈m|)B)

=
1

2

∑
n,m∈{+,−}

((|n〉〈m|)A ⊗ δmn)

Due to the trace only sums the diagonal elements ( Tr (|n〉〈m|) = 〈m|n〉 = δmn. Since δmn is a
number, the tensor product reduces down to simple multiplication:

ρ̂A =
1

2

∑
n,m∈{+,−}

(δmn|n〉〈m|)

Thus,

ρ̂A =
1

2
(|+〉〈+|+ |−〉〈−|)
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This is a matrix with both eigenvalues
1

2
, thus we find the entropy:

SA = SB = −1

2
ln

1

2
− 1

2
ln

1

2
= log 2 (1)

Thus, they are maximally entangeled.

b) The operation ÛB = 1⊗ ÛB , and ÛA = ÛA ⊗ 1, thus, applying both yields:

ÛAÛB =
(
ÛA ⊗ 1

)(
1⊗ ÛB

)
= ÛA ⊗ ÛB

Applying this as a transformation, we get:

|ψ〉 → |ψ′〉 = ÛA ⊗ ÛB|ψ〉

ρ̂→ ρ̂′ =
(
ÛA ⊗ ÛB

)
ρ̂
(
ÛA ⊗ ÛB

)†
Then:

ρ̂′A = TrB

[(
ÛA ⊗ ÛB

)
ρ̂
(
ÛA ⊗ ÛB

)†]

= TrB

(ÛA ⊗ ÛB)
1

2

∑
n,m∈{+,−}

(|n〉A ⊗ |n〉B) (〈m|A ⊗ 〈m|B)

(ÛA ⊗ ÛB)†


= TrB

1

2

∑
n,m∈{+,−}

([
ÛA|n〉A

]
⊗
[
ÛB|n〉B

])([
〈m|AÛ †A

]
⊗
[
〈m|BÛ †B

])
=

1

2
TrB

 ∑
n,m∈{+,−}

([
ÛA|n〉A〈m|AÛ †A

]
⊗
[
ÛB|n〉B〈m|BÛ †B

])
=

1

2

 ∑
n,m∈{+,−}

([
ÛA|n〉A〈m|AÛ †A

]
⊗ Tr

[
ÛB|n〉B〈m|BÛ †B

])
From problem set 1, we showed that Tr

(
ÛAÛ †

)
= Tr (A) by

Tr
(
ÛAÛ †

)
= Tr

(
Û
[
AÛ †

])
= Tr

([
AÛ †

]
Û
)

= Tr (A)

We arrive at

ρ̂′A =
1

2

 ∑
n,m∈{+,−}

ÛA|n〉〈m|Û †Aδmn

 =

 ∑
n∈{+,−}

ÛA|n〉〈n|Û †A

 = ÛAρ̂AÛ
†
A

The entropy is then given as:
S′A = −Tr

(
ρ̂′A log

(
ρ̂′A
))

Since ρ̂′A = ÛAρ̂AÛ
†
A, they have the same eigenvalues, and therefore the entropy is the same.
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c) After the measurement, part A of the system is projected on one of the eigenstates of the operator
being measured (it does not matter which operator this is). It is then in a well defined pure state
and not entangled with part B any more. The entropy of entanglement after the measurement is 0.

5.3 Matrix representation of tensor products

a =

(
a1

a2

)
, b =

(
b1
b2

)
|c〉 = |a〉 ⊗ |b〉 ⇒ |c〉 =

∑
ij

aibj |ij〉, |ij〉 = |i〉A ⊗ |j〉B

a) We have

c =


c1

c2

c3

c4

 =


a1b1
a1b2
a2b1
a2b2

 =

(
a1b
a2b

)
(2)

For the basis vectors, we can assume

|1〉A =

(
1
0

)
, |2〉A =

(
0
1

)
And similarily in the B space. We can use the result (2), to have:

|ij〉 = |i〉A ⊗ |j〉B =

(
i1j
i2j

)
Then:

|11〉 =


1
0
0
0

 , |12〉 =


0
1
0
0

 , |21〉 =


0
0
1
0

 , |22〉 =


0
0
0
1


b) We have

C =


A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

 =

(
A11B A12B
A21B A22B

)

c)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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We show three examples

σ1 ⊗ σ2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 =

(
0 σ2

σ2 0

)

σ1 ⊗ σ3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 =

(
0 σ3

σ3 0

)

σ2 ⊗ σ3 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 =

(
0 −iσ3

iσ3 0

)

d) We have

Cc =

(
A11B A12B
A21B A22B

)(
a1b
a2b

)
=

(
A11a1Bb +A12a2Bb
A21a1Bb +A22a2Bb

)
We use that Â⊗ B̂|a〉 ⊗ |b〉 = Â|a〉 ⊗ B̂|b〉 and that the matrix representing Â|a〉 is

Aa =

(
A11a1 +A12a2

A21a1 +A22a2

)
Then the matrix representing Â⊗ B̂|a〉 ⊗ |b〉 is(

(A11a1 +A12a2)Bb
(A21a1 +A22a2)Bb

)
which is the same as Cc

5.4 Schmidt decomposition 1

We have a system consisting of two spin-1
2 particles. For each of the following states, study the

reduced density matrix of of one of the particles and determine if the state is entangled or not. For the
states which are not entangled, find a factorization of the state as a tensor product of one state for each
particle. For the entagled states, find the Schmidt decomposition of the state.

|ψ1〉 =
1

2
(| ↑↑〉 − | ↑↓〉+ | ↓↑〉 − | ↓↓〉)

|ψ2〉 =
1

2
(| ↑↑〉+ | ↑↓〉+ | ↓↑〉 − | ↓↓〉)

|ψ3〉 = a+| ↑↑〉+ a−| ↑↓〉+ a−| ↓↑〉+ a+| ↓↓〉
|ψ4〉 = a−| ↑↑〉+ a+| ↑↓〉+ a+| ↓↑〉+ a−| ↓↓〉
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where

a± =

√
3± 1

4

|ψ1〉 = 1
2
(| ↑↑〉 − | ↑↓〉+ | ↓↑〉 − | ↓↓〉):

The density matrix

ρ1 = |ψ1〉〈ψ1| =
1

4
(| ↑↑〉 − | ↑↓〉+ | ↓↑〉 − | ↓↓〉) (〈↑↑ | − 〈↑↓ |+ 〈↓↑ | − 〈↓↓ |)

ρA1 = TrB ρ1 =
1

2
(| ↑〉〈↑ |+ | ↑〉〈↓ |+ | ↓〉〈↑ |+ | ↓〉〈↓ |) =

1

2

(
1 1
1 1

)
The eigenvalues are 0 and 1, which shows that |ψ1〉 is not entangled. To find the factorization of
the state we need the eigenvectors of the reduced density matrix ρA1 . The one with eigenvalue 1 is
|1〉A = 1√

2
(| ↑〉 + | ↓〉), while the one with eigenvalue 0 is |0〉A = 1√

2
(| ↑〉 − | ↓〉) (since this has

eigenvalue 0 it will not appear in the factorization). We can now express the state |ψ1〉 in terms of
these eigenvectors and find that

|ψ1〉 = |1〉A ⊗
1√
2

(| ↑〉 − | ↓〉)

|ψ2〉 = 1
2
(| ↑↑〉+ | ↑↓〉+ | ↓↑〉 − | ↓↓〉):

The density matrix

ρ2 = |ψ2〉〈ψ2| =
1

4
(| ↑↑〉+ | ↑↓〉+ | ↓↑〉 − | ↓↓〉) (〈↑↑ |+ 〈↑↓ |+ 〈↓↑ | − 〈↓↓ |)

ρA2 = TrB ρ2 =
1

2
(| ↑〉〈↑ |+ | ↓〉〈↓ |) =

1

2

(
1 0
0 1

)
This is not a pure state, so |ψ2〉 is entangled. The eigenvalues are both 1

2 and all vectors are eigenvec-
tors. Because of that we can choose which basis to use for part A, and the Schmidt decomposition is
not unique. Let us take the basis to be | ↑〉 and | ↓〉 for simplicity, and we find

|ψ2〉 =
1√
2
| ↑〉 ⊗ 1√

2
(| ↑〉+ | ↓〉) +

1√
2
| ↓〉 ⊗ 1√

2
(| ↑〉 − | ↓〉)

|ψ3〉 = a+| ↑↑〉+ a−| ↑↓〉+ a−| ↓↑〉+ a+| ↓↓〉:

The density matrix

ρ3 = |ψ3〉〈ψ3| = (a+| ↑↑〉+ a−| ↑↓〉+ a−| ↓↑〉+ a+| ↓↓〉) (a+〈↑↑ |+ a−〈↑↓ |+ a−〈↓↑ |+ a+〈↓↓ |)

ρA3 = TrB ρ3 = (a2
++a2

−)| ↑〉〈↑ |+2a+a−| ↑〉〈↓ |+2a+a−| ↓〉〈↑ |+(a2
++a2

−)| ↓〉〈↓ | =
(

1
2

1
4

1
4

1
2

)
Diagonalizing we find the eigenvalues p+ = 3

4 with eigenvector | ↑x〉 and p− = 1
4 with eigenvector

| ↓x〉. This is not a pure state, so |ψ3〉 is entangled. Expressing the state in terms of the eigenvectors
we find

|ψ3〉 =

√
3

2
| ↑x↑x〉+

1

2
| ↓x↓x〉
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|ψ4〉 = a−| ↑↑〉+ a+| ↑↓〉+ a+| ↓↑〉+ a−| ↓↓〉:

The density matrix

ρ4 = |ψ3〉〈ψ3| = (a−| ↑↑〉+ a+| ↑↓〉+ a+| ↓↑〉+ a−| ↓↓〉) (a−〈↑↑ |+ a+〈↑↓ |+ a+〈↓↑ |+ a−〈↓↓ |)

ρA4 = TrB ρ4 = (a2
++a2

−)| ↑〉〈↑ |+2a+a−| ↑〉〈↓ |+2a+a−| ↓〉〈↑ |+(a2
++a2

−)| ↓〉〈↓ | =
(

1
2

1
4

1
4

1
2

)
which is the same as we found for ρA3 . Thus we get the same eigenvalues and eigenvectors and we
find

|ψ4〉 =

√
3

2
| ↑x↑x〉 −

1

2
| ↓x↓x〉.

5.5 Schmidt decomposition 2

a) The Schmidt decomposition rewrites a general state in the product space, as a sum of states ex-
pressed in an orthonormal basis for each Hilbert space:

Ψ(x) = c1χ1φ1(x) + c2χ2φ2(x) (3)

Thus, the spinors and wavefunctions must satisfy the orthonormality conditions

χ†iχj =

∫
dxφ∗iφj = δij

b) The normalization factor is given by 〈Ψ|Ψ〉 = 1.

〈Ψ|Ψ〉 =

∫ ∞
−∞
| Ψ(x) |2 dx

=

∫ ∞
−∞

dx | ψ1(x) |2 +

∫ ∞
−∞

dx | ψ2(x) |2

= | N |2
(∫ ∞
−∞

e−2λ(x−x0)2dx+

∫ ∞
−∞

e−2λ(x+x0)2dx

)
Substituting y = x± x0 in the first and second integral respectively yields :

〈Ψ|Ψ〉 = 2 | N |2
∫ ∞
−∞

e−2λy2dx

= 2 | N |2
√

π

2λ

⇒ N =
4

√
λ

2π
, when choosing N ∈ R
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Then it follows:

∆ = 〈ψ1|ψ2〉

= N2

∫ ∞
−∞

e−λ(x−x0)2e−λ(x+x0)2dx

= N2

∫ ∞
−∞

e−2λ(x2+x20)dx

= N2e−2λx20

∫ ∞
−∞

dxe−2λx2

= N2e−2λx20

√
π

2λ

∆ =
1

2
e−2λx20

c) To find the Schmidt decompostion, we have to find the eigenstates of the reduced density matrix
for at least one of the subsystems (spin or position). It is simplest to work with spin, since it has
the smallest Hilbert space. Therefore we will trace over the position

ρspin =

∫
dx〈x|Φ〉〈Φ|x〉 =

∫
dx

(
ψ1

ψ2

)(
ψ∗1 ψ∗2

)
=

∫
dx

(
ψ1ψ

∗
1 ψ1ψ

∗
2

ψ2ψ
∗
1 ψ2ψ

∗
2

)
=

(
1
2 ∆
∆ 1

2

)
The eigenvalues of this are

p1 =
1

2

(
1 + e−2λx20

)
p2 =

1

2

(
1− e−2λx20

)
with the corresponding eigenvectors

χ1 =
1√
2

(
1
1

)
χ2 =

1√
2

(
1
−1

)
The coefficients in the Schmidt decomposition are the square roots of the eigenvectors, ci =

√
pi

and we get from Eq (3) that

ψ1 =
1√
2
c1φ1 +

1√
2
c2φ2

ψ2 =
1√
2
c1φ1 −

1√
2
c2φ2

which we can solve to find

φ1 =
1√
2c1

(ψ1 + ψ2) =
N√

1 + e−2λx20

(
e−λ(x−x0)2 + e−λ(x+x0)2

)
φ2 =

1√
2c2

(ψ1 − ψ2) =
N√

1− e−2λx20

(
e−λ(x−x0)2 − e−λ(x+x0)2

)
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5.6 Coupled two-level systems

Ĥ =
ε

2
(3σz ⊗ 1 + 1⊗ σz) + λ (σ+ ⊗ σ− + σ− ⊗ σ+)

σ± =
1

2
(σx ± iσy)

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
a)

σ+ =
1

2

(
0 1 + 1

1− 1 0

)
=

(
0 1
0 0

)
σ− =

(
0 0
1 0

)

Ĥ =
ε

2


3

(
1 0
0 1

)
0

0 −3

(
1 0
0 1

)
+

1

(
1 0
0 −1

)
0

0 1

(
1 0
0 −1

)

 (4)

+λ

0 1

(
0 0
1 0

)
0 0

+

 0 0

1

(
0 1
0 0

)
0



=


2ε 0 0 0
0 ε λ 0
0 λ −ε 0
0 0 0 −2ε

 (5)

The eigenvalue equation becomes:

| Ĥ − 1e | = 0∣∣∣∣∣∣∣∣
2ε− e 0 0 0

0 ε− e λ 0
0 λ −ε− e 0
0 0 0 −2ε− e

∣∣∣∣∣∣∣∣ = 0

(2ε− e)

∣∣∣∣∣∣
ε− e λ 0
λ −ε− e 0
0 0 −2ε− e

∣∣∣∣∣∣ = 0

(2ε− e) (−2ε− e)
[
(ε− e) (−ε− e)− λ2

]
= 0

From here, we immidiately see the value of the first two eigenvalues, the rest is determined by:

−
(
ε2 − e2

)
− λ2 = 0

e = ±
√
ε2 + λ2
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The eigenvalues are thus:

e1 = 2ε, e2 = −2ε, e3 =
√
ε2 + λ2, e4 = −

√
ε2 + λ2

We see that e1 and e2 are independent of λ, and from the hamiltonian (5), it is easy to to see that
the eigenvectors are:

e1 =


1
0
0
0

 , e2 =


0
0
0
1


Then setting ε = µ cos θ and λ = µ sin θ, we get:

e1 = 2µ cos θ, e2 = −2µ cos θ, e3 = µ, e4 = −µ

The hamiltonian takes the form:

Ĥ =


2µ cos θ 0 0 0

0 µ cos θ µ sin θ 0
0 µ sin θ −µ cos θ 0
0 0 0 −2µ cos θ


For the remaining subspace, the eigenvector equation is:(

µ cos θ µ sin θ
µ sin θ −µ cos θ

)(
a
b

)
= ±µ

(
a
b

)
Then:

a cos θ + b sin θ = ±a
a cos θ − b sin θ = ±b

Staring with the first equation:

a cos θ + b sin θ = ±a⇒ b = a
±1− cos θ

sin θ

Then, if a = sin θ, we get the following eigenvectors:

e′3 =


0

sin θ
1− cos θ

0

 , e′4 =


0

sin θ
−1− cos θ

0


I marked them as to say that they are not the final eigenvectors, they need to be normalized first:√

e′3 · e′3 =

√
sin2 θ + (1− cos θ)2 =

√
sin2 θ + 1− 2 cos θ + cos θ2 =

√
2− 2 cos θ√

e′4 · e′4 =

√
sin2 θ + (1 + cos θ)2 =

√
sin2 θ + 1 + 2 cos θ + cos2 θ =

√
2 + 2 cos θ
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Then:

e3 =
1√

2− 2 cos θ


0

sin θ
1− cos θ

0

 =


0

cos θ2
sin θ

2
0

 , e4 =
1√

2 + 2 cos θ


0

sin θ
−1− cos θ

0

 =


0

sin θ
2

− cos θ2
0


Just to summarize, the eigenvectors are:

e1 =


1
0
0
0

 , e2 =


0
0
0
1

 , e3 =


0

cos θ2
sin θ

2
0

 , e4 =


0

sin θ
2

− cos θ2
0


The energies are:

E1 = 2µ cos θ, E2 = −2µ cos θ, E3 = µ, E4 = −µ

b) The two interesting eigenstates are e3 and e4

ρ̂3 = e3e
T
3 =


0 0 0 0

0 cos2 θ
2 cos θ2 sin θ

2 0

0 cos θ2 sin θ
2 sin2 θ

2 0
0 0 0 0



ρ̂4 = e4e
T
4 =


0 0 0 0

0 sin2 θ
2 − cos θ2 sin θ

2 0

0 − cos θ2 sin θ
2 cos2 θ

2 0
0 0 0 0


Before considering the partial traces, let’s look at how this works out in the matrix representation.
A general 4x4 matrix can be written as a sum over tensor products between 2x2 matrices (also
called “Kronecker product”):

C =
∑
ij

cijAi ⊗Bj

=
∑
ij

cij


Ai11

(
B11 B12

B21 B22

)
j

Ai12

(
B11 B12

B21 B22

)
j

Ai21

(
B11 B12

B21 B22

)
j

Ai22

(
B11 B12

B21 B22

)
j


≡

∑
ij

cij

(
C11 C12

C21 C22

)
ij

Then the partial traces become:

TrAC =
∑
ij

cij (C11 + C22)ij

TrBC =
∑
ij

cij

(
TrC11 TrC12

TrC21 TrC22

)
ij
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And since Tr (A+B) = TrA+ TrB, we see that in our case:

ρ̂A3 = TrB ρ̂3 =

(
cos2 θ

2 0

0 sin2 θ
2

)
ρ̂B3 = TrAρ̂3 =

(
sin2 θ

2 0

0 cos2 θ
2

)
ρ̂A4 = TrB ρ̂4 =

(
sin2 θ

2 0

0 cos2 θ
2

)
ρ̂B4 = TrAρ̂4 =

(
cos2 θ

2 0

0 sin2 θ
2

)
c) We see that all the reduced density matrices have the same eigenvalues, and the von Neuman

entropy is thus the same and given by:

S = − cos2 θ

2
ln cos2 θ

2
− sin2 θ

2
ln sin2 θ

2

The entropy is maximal when cos2 θ
2 = sin2 θ

2 = 1
2 , which means

θ =
π

2
+ nπ, n ∈ Z

5.7 Entanglement in the Jaynes-Cummings model

a) We have
|ψ(t)〉 = c−n (t)|−, n+ 1〉+ c+

n (t)|+, n〉

which gives the density matrix

ρ = |ψ(t)〉〈ψ(t)|
= |c−n (t)|2|−, n+ 1〉〈−, n+ 1|+ c−n (t)c+

n (t)∗|−, n+ 1〉〈+, n|
+ c−n (t)∗c+

n (t)|+, n〉〈−, n+ 1|+ |c+
n (t)|2|+, n〉〈+, n|

Tracing over the photon mode we find

ρTLS =
∑
m

〈m|ρ|m〉 = |c−n (t)|2|−〉〈−|+ |c+
n (t)|2|+〉〈+|.

This is diagonal, and we have the probabilities for the two states

p+ = |c+
n (t)|2 = sin2 Ωnt

2
sin2 θn

p− = |c−n (t)|2 = 1− sin2 Ωnt

2
sin2 θn
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The entanglement entropy is

S = −p+ ln p+ − p− ln p−

This is maximal when p+ and p− are as equal as possible. If sin2 θn > 1/2, which means that
θn > π/4, we can get p+ = p− = 1

2 with

Smax = −1

2
ln

1

2
− 1

2
ln

1

2
= ln 2.

This will happen when

sin2 Ωnt

2
sin2 θn =

1

2

which means

t =
2

Ωn
arcsin

[
1√

2 sin θn

]
=

2

Ωn
arcsin

[
Ωn√
2gn

]
If sin2 θn < 1/2 we have p+ < 1

2 and maximal when Ωnt
2 = π

2 + mπ, with m an integer.
p+
max = sin2 θn and

Smax = − sin2 θn ln sin2 θn − cos2 θn ln cos2 θn.

b) For the Rabi model (in the rotating frame) we have

|ψ(t)〉 = c0(t)|0〉+ c1(t)|1〉

with
c0(t) = cos

Ωt

2
+ i sin

Ωt

2
cos θ, c1(t) = i sin

Ωt

2
sin θ.

This is a pure state and the Bloch vector has components

mR
x = 2 Re(c∗0c1) = sin 2θ sin2 Ωt

2

mR
y = 2 Im(c∗0c1) = sin θ sin Ωt

mR
z = |c0|2 − |c1|2 = 1− 2 sin2 θ sin2 Ωt

2
.

For the Jaynes-Cummings model we use

ρTLS =
1

2
(1 + mJC · σ)

We know that
ρTLS = p−|−〉〈−|+ p+|+〉〈+| = 1

2
(1 + (p− − p+)σz)

from which we read out

mJC
x = mJC

y = 0

mJC
z = p− − p+ = 1− 2 sin2 θn sin2 Ωnt

2
.
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In the Rabi model, the state is always pure, and the Bloch vector presesses in a circle on the surface
of the Bloch sphere. In the Jaynes-Cummings model, the qubit is entangled with the photon mode,
and the reduced density matrix describes a mixed state. The Bloch vector oscillates along the axis
of the Bloch sphere with mJC

z = mR
z This is shown in the following figure with the Rabi model in

Blue and the Jaynes-Cummings model in red.

c) In the limit n→∞ we have that gn = 2λ
√
n+ 1 grows. This means that

Ωn =
√

∆2 + g2
n → gn

and sin θn = gn
Ωn
→ 1. So the amplitude and frequency of the oscillations grow, but the Bloch

vector is always on the axis of the Bloch sphereand entanglement is not reduced.

An idea for a better classical limit is to assume that the photon mode starts in a coherent state
instead of an energy eigenstate. We know that coherent states are the link to classical mechanics
for the harmonic oscillator, and we can hope that it will extend to the Jaynes-Cummings model as
well. In the figure the result is shown in green
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As we can see, it works to some extent, but it becomes a spiral instead of a circle. Here I used
an average photon number of 9 in the initial state. Maybe it should be bigger for the limit, but
numerics gets slow. More work is needed......


