Solutions to problem set 7

7.1 The canonical commutation relations.

$$
\begin{gathered}
\hat{A}_{\mathbf{k} a}=\sqrt{\frac{\hbar}{2 \omega_{k} \epsilon_{0}}}\left(\hat{a}_{\mathbf{k} a}+\hat{a}_{-\mathbf{k} \bar{a}}^{\dagger}\right), \quad \hat{E}_{\mathbf{k} a}=i \sqrt{\frac{\hbar \omega_{k}}{2 \epsilon_{0}}}\left(\hat{a}_{\mathbf{k} a}-\hat{a}_{-\mathbf{k} \bar{a}}^{\dagger}\right) \\
{\left[\hat{A}_{\mathbf{k} a}, \hat{E}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right]=-i \frac{\hbar}{\epsilon_{0}} \delta_{\mathbf{k k}^{\prime}} \delta_{a a^{\prime}}}
\end{gathered}
$$

We need to express the ladder operators in terms of \hat{A} and \hat{E}^{\dagger}, by inspection, we see that:

$$
\hat{a}_{\mathbf{k} a}=\frac{1}{2}\left(\sqrt{\frac{2 \omega_{k} \epsilon_{0}}{\hbar}} \hat{A}_{\mathbf{k} a}-i \sqrt{\frac{2 \epsilon_{0}}{\hbar \omega_{k}}} \hat{E}_{\mathbf{k} a}\right)
$$

from which we calculate:

$$
\hat{a}_{\mathbf{k} a}^{\dagger}=\frac{1}{2}\left(\sqrt{\frac{2 \omega_{k} \epsilon_{0}}{\hbar}} \hat{A}_{\mathbf{k} a}^{\dagger}+i \sqrt{\frac{2 \epsilon_{0}}{\hbar \omega_{k}}} \hat{E}_{\mathbf{k} a}^{\dagger}\right)
$$

Then:

$$
\begin{aligned}
{\left[\hat{a}_{\mathbf{k} a}, \hat{a}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right]=} & {\left[\frac{1}{2}\left(\sqrt{\frac{2 \omega_{k} \epsilon_{0}}{\hbar}} \hat{A}_{\mathbf{k} a}-i \sqrt{\frac{2 \epsilon_{0}}{\hbar \omega_{k}}} \hat{E}_{\mathbf{k} a}\right), \frac{1}{2}\left(\sqrt{\frac{2 \omega_{k^{\prime}} \epsilon_{0}}{\hbar}} \hat{A}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}+i \sqrt{\frac{2 \epsilon_{0}}{\hbar \omega_{k^{\prime}}}} \hat{E}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right)\right] } \\
= & \frac{1}{4}(\frac{2 \epsilon_{0} \sqrt{\omega_{k} \omega_{k^{\prime}}}}{\hbar} \underbrace{\left[\hat{A}_{\mathbf{k} a},\right.}_{=0}, \hat{A}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}] \\
\dagger & \left.i \frac{2 \epsilon_{0}}{\hbar} \sqrt{\frac{\omega_{k}}{\omega_{k^{\prime}}}}\left[\hat{A}_{\mathbf{k} a}, \hat{E}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right]\right) \\
& +\frac{1}{4}(-i \frac{2 \epsilon_{0}}{\hbar} \sqrt{\frac{\omega_{k^{\prime}}}{\omega_{k}}}\left[\hat{E}_{\mathbf{k} a}, \hat{A}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right]+\frac{2 \epsilon_{0}}{\hbar \sqrt{\omega_{k} \omega_{k^{\prime}}}} \underbrace{\left.\hat{E}_{\mathbf{k} a}, \hat{E}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right]}_{=0}) \\
= & i \frac{\epsilon_{0}}{2 \hbar} \sqrt{\frac{\omega_{k}}{\omega_{k^{\prime}}}} \underbrace{\hat{A}_{\mathbf{k} a a^{\prime}}}_{=-i \frac{\hbar}{\epsilon_{0}} \delta_{\mathbf{k} \mathbf{k}^{\prime}}}, \hat{E}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}]
\end{aligned} i \frac{\epsilon_{0}}{2 \hbar} \sqrt{\frac{\omega_{k^{\prime}}}{\omega_{k}}}\left[\hat{E}_{\mathbf{k} a}, \hat{A}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right] \quad .
$$

Looking at the last commutator:

$$
\begin{aligned}
{\left[\hat{E}_{\mathbf{k} a}, \hat{A}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right] } & =\hat{E}_{\mathbf{k} a} \hat{A}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}-\hat{A}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger} \hat{E}_{\mathbf{k} a}=\left(\hat{A}_{\mathbf{k}^{\prime} a^{\prime}} \hat{E}_{\mathbf{k} a}^{\dagger}\right)^{\dagger}-\left(\hat{E}_{\mathbf{k} a}^{\dagger} \hat{A}_{\mathbf{k}^{\prime} a^{\prime}}\right)^{\dagger} \\
& =\left(\hat{A}_{\mathbf{k}^{\prime} a^{\prime}} \hat{E}_{\mathbf{k} a}^{\dagger}-\hat{E}_{\mathbf{k} a}^{\dagger} \hat{A}_{\mathbf{k}^{\prime} a^{\prime}}\right)^{\dagger}=\left[\hat{A}_{\mathbf{k}^{\prime} a^{\prime}}, \hat{E}_{\mathbf{k} a}^{\dagger}\right]^{\dagger} \\
& =\left(-i \frac{\hbar}{\epsilon_{0}} \delta_{\mathbf{k}^{\prime} \mathbf{k}} \delta_{a^{\prime} a}\right)^{\dagger}=i \frac{\hbar}{\epsilon_{0}} \delta_{\mathbf{k}^{\prime} \mathbf{k}} \delta_{a^{\prime} a}
\end{aligned}
$$

So far, we have:

$$
\begin{aligned}
{\left[\hat{a}_{\mathbf{k} a}, \hat{a}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right] } & =i \frac{\epsilon_{0}}{2 \hbar} \sqrt{\frac{\omega_{k}}{\omega_{k^{\prime}}}}\left(-i \frac{\hbar}{\epsilon_{0}} \delta_{\mathbf{k} \mathbf{k}^{\prime}} \delta_{a a^{\prime}}\right)-i \frac{\epsilon_{0}}{2 \hbar} \sqrt{\frac{\omega_{k^{\prime}}}{\omega_{k}}}\left(i \frac{\hbar}{\epsilon_{0}} \delta_{\mathbf{k}^{\prime} \mathbf{k}} \delta_{a^{\prime} a}\right) \\
& =\frac{1}{2} \sqrt{\frac{\omega_{k}}{\omega_{k^{\prime}}}} \delta_{\mathbf{k k}^{\prime}} \delta_{a a^{\prime}}+\frac{1}{2} \sqrt{\frac{\omega_{k^{\prime}}}{\omega_{k}}}\left(\delta_{\mathbf{k}^{\prime} \mathbf{k}} \delta_{a^{\prime} a}\right) \\
& =\frac{1}{2}\left(\sqrt{\frac{\omega_{k}}{\omega_{k^{\prime}}}}+\sqrt{\frac{\omega_{k^{\prime}}}{\omega_{k}}}\right) \delta_{\mathbf{k k}^{\prime}} \delta_{a a^{\prime}}
\end{aligned}
$$

$\delta_{\mathbf{k k}^{\prime}}$ will either return zero if $\mathbf{k} \neq \mathbf{k}^{\prime}$, or 1 if $\mathbf{k}=\mathbf{k}^{\prime}$, in the latter case, $\sqrt{\frac{\omega_{k}}{\omega_{k^{\prime}}}}+\sqrt{\frac{\omega_{k^{\prime}}}{\omega_{k}}}=2$, and if not, the expression has no contribution, thus, we can neglect it and get the desired result:

$$
\left[\hat{a}_{\mathbf{k} a}, \hat{a}_{\mathbf{k}^{\prime} a^{\prime}}^{\dagger}\right]=\delta_{\mathbf{k} \mathbf{k}^{\prime}} \delta_{a a^{\prime}}
$$

7.2 Charged particle in a strong magnetic field (Midterm Exam 2005).

a) From Newtons second law:

$$
\begin{equation*}
m \frac{d \mathbf{v}}{d t}=e(\mathbf{v} \times \mathbf{B}) \tag{1}
\end{equation*}
$$

for a particle moving in a magnetic field $(\mathbf{E}=0)$. The velocity is restricted to the $x y$-plane, and the magnetic field is in the z-direction. Thus, by integration:

$$
\begin{aligned}
\frac{d \mathbf{v}}{d t} & =\frac{e B}{m}(\mathbf{v} \times \mathbf{k}) \\
\Rightarrow \mathbf{v} & =\frac{e B}{m}(\mathbf{r} \times \mathbf{k})+\mathbf{C} \\
& =-\frac{e B}{m} \mathbf{k} \times \mathbf{r}+\mathbf{C}
\end{aligned}
$$

We recognize this as the expression for angular velocity with $\omega=-\frac{e B}{m}$ where \mathbf{C} is a constant that can be determined from the initial conditions. We can parametrize \mathbf{C} to a vector on the same form $\mathbf{C}=-\omega \times \mathbf{r}_{0}$ where \mathbf{r}_{0} is a constant:

$$
\begin{align*}
\mathbf{v} & =\vec{\omega} \times \mathbf{r}-\vec{\omega} \times \mathbf{r}_{0} \\
\mathbf{v} & =\vec{\omega} \times\left(\mathbf{r}-\mathbf{r}_{0}\right) \tag{2}
\end{align*}
$$

We see that this represents constant angular motion around the centre \mathbf{r}_{0} with angular frequency $\omega=-\frac{e B}{m}$.

To check if $L_{m e k}=m\left(x v_{y}-y v_{x}\right)$ is a constant of motion, we start by calculating:

$$
\begin{aligned}
m \frac{d \mathbf{v}}{d t} & =e \mathbf{v} \times \mathbf{B} \\
& =q\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
v_{x} & v_{y} & 0 \\
0 & 0 & B
\end{array}\right| \\
& =v_{y} B \mathbf{i}-v_{x} B \mathbf{j}
\end{aligned}
$$

Then:

$$
\begin{aligned}
\frac{d L_{m e k}}{d t} & =m\left(\frac{d x}{d t} v_{y}+x \frac{d v_{y}}{d t}-\frac{d y}{d t} v_{x}-y \frac{d v_{x}}{d t}\right) \\
& =m \frac{d x}{d t} v_{y}+x m \frac{d v_{y}}{d t}-m \frac{d y}{d t} v_{x}-y m \frac{d v_{x}}{d t} \\
& =m v_{x} v_{y}-e B x v_{x}-m v_{y} v_{x}-e B y v_{y} \\
& =-e B\left(x v_{x}+y v_{y}\right) \\
& =-e B \mathbf{r} \cdot \mathbf{v} \\
& =-e B\left(\mathbf{r} \cdot \frac{d \mathbf{r}}{d t}\right) \\
& =-\frac{e B}{2}\left(\mathbf{r} \cdot \frac{d \mathbf{r}}{d t}+\frac{d \mathbf{r}}{d t} \cdot \mathbf{r}\right) \\
& =-\frac{e B}{2} \frac{d}{d t} r^{2}
\end{aligned}
$$

As we see, $\frac{d}{d t} L_{m e k} \neq 0$, and thus not a constant of motion. Instead we have that $L=L_{m e k}+$ $(e B / 2) r^{2}$ is conserved as:

$$
\begin{aligned}
\frac{d L}{d t} & =\frac{d L_{m e k}}{d t}+\frac{e B}{2} \frac{d}{d t} r^{2} \\
& =\frac{e B}{2} \frac{d}{d t}\left(-r^{2}+r^{2}\right) \\
& =0
\end{aligned}
$$

b) To check if \mathbf{R} is a constant of motion, we take the derivative:

$$
\begin{aligned}
\frac{d \mathbf{R}}{d t} & =\frac{d \mathbf{r}}{d t}+\frac{1}{\omega} \frac{d}{d t}(\mathbf{k} \times \mathbf{v}) \\
& =\frac{d \mathbf{r}}{d t}+\frac{1}{\omega} \mathbf{k} \times \frac{d \mathbf{v}}{d t} \\
& \stackrel{(1)}{=} \mathbf{v}+\frac{e}{m \omega} \mathbf{k} \times(\mathbf{v} \times \mathbf{B}) \\
& =\mathbf{v}+\frac{e}{m \omega}(\mathbf{v}(\mathbf{k} \cdot \mathbf{B})-\mathbf{B}(\mathbf{k} \cdot \mathbf{v})) \\
& =\mathbf{v}+\frac{e B}{m \omega} \mathbf{v} \\
& =\mathbf{v}+\frac{e B}{m} \frac{m}{-e B} \mathbf{v} \\
& =\mathbf{0}
\end{aligned}
$$

Which it is. Inserting (2) into the expression for \mathbf{R} we have:

$$
\begin{align*}
\mathbf{R} & =\mathbf{r}+\frac{1}{\omega} \mathbf{k} \times \mathbf{v} \\
& =\mathbf{r}+\frac{1}{\omega} \mathbf{k} \times \vec{\omega} \times\left(\mathbf{r}-\mathbf{r}_{0}\right) \\
& =\mathbf{r}+\frac{1}{\omega}(\vec{\omega} \cdot(\underbrace{\mathbf{k} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)}_{=0})-\left(\mathbf{r}-\mathbf{r}_{0}\right) \underbrace{(\mathbf{k} \cdot \vec{\omega})}_{=\omega}) \\
& =\mathbf{r}-\left(\mathbf{r}-\mathbf{r}_{0}\right) \\
\mathbf{R} & =\mathbf{r}_{0} \tag{3}
\end{align*}
$$

So \mathbf{R} points to the centre of the circular orbit. $\vec{\rho}$ is given by:

$$
\begin{aligned}
\vec{\rho} & =\mathbf{R}-\mathbf{r} \\
& =\mathbf{r}_{0}-\mathbf{r}
\end{aligned}
$$

So ρ points from the particle to the centre of orbit.
c) If we use (from the problem set):

$$
\begin{aligned}
\mathbf{v} & =\frac{(\mathbf{p}-e \mathbf{A})}{m} \\
& =\frac{1}{m}\left(\mathbf{p}+\frac{e}{2} \mathbf{r} \times \mathbf{B}\right) \\
& =\frac{1}{m}\left(\mathbf{p}+\frac{e B}{2} \mathbf{r} \times \mathbf{k}\right)
\end{aligned}
$$

where \mathbf{p} denotes the canonical momentum, we can express \mathbf{R} with \mathbf{p} and \mathbf{r} only :

$$
\begin{aligned}
\mathbf{R} & =\mathbf{r}+\frac{1}{\omega} \mathbf{k} \times \mathbf{v} \\
& =\mathbf{r}+\frac{1}{m \omega} \mathbf{k} \times\left(\mathbf{p}+\frac{e B}{2} \mathbf{r} \times \mathbf{k}\right) \\
& =\mathbf{r}+\frac{1}{m \omega}(\mathbf{k} \times \mathbf{p}+\underbrace{}_{=-\frac{e B}{2}} \underbrace{\mathbf{k} \times[\mathbf{r} \times \mathbf{k}]}_{=\mathbf{r}}) \\
& =\mathbf{r}+\frac{1}{m \omega} \underbrace{\mathbf{k} \times \mathbf{p}}_{=-\frac{\hat{i}}{}+p_{x} \hat{j}}+\underbrace{\frac{e B}{2 m \omega}}_{=-\frac{1}{2}} \mathbf{r} \\
& =\mathbf{r}\left(1-\frac{1}{2}\right)+\frac{1}{m \omega}\left(-p_{y} \hat{i}+p_{x} \hat{j}\right) \\
& =\left(\frac{1}{2} x-\frac{1}{m \omega} p_{y}\right) \mathbf{i}+\left(\frac{1}{2} y+\frac{1}{m \omega} p_{x}\right) \mathbf{j} \\
& \equiv X \mathbf{i}+Y \mathbf{j}
\end{aligned}
$$

We can now express these as QM operators by replacing $r \rightarrow \hat{r}$ and $p \rightarrow \hat{p}$ with the commutation relations

$$
\left[\hat{r}_{j}, \hat{p}_{k}\right]=i \hbar \delta_{j k}
$$

This gives:

$$
\begin{aligned}
\hat{X} & =\frac{1}{2} \hat{x}-\frac{1}{m \omega} \hat{p}_{y} \\
\hat{Y} & =\frac{1}{2} \hat{y}-\frac{1}{m \omega} \hat{p}_{x}
\end{aligned}
$$

These commute as:

$$
\begin{aligned}
{[\hat{X}, \hat{Y}] } & =\left[\frac{1}{2} \hat{x}-\frac{1}{m \omega} \hat{p}_{y}, \frac{1}{2} \hat{y}+\frac{1}{m \omega} \hat{p}_{x}\right] \\
& =\frac{1}{4} \underbrace{[\hat{x}, \hat{y}]}_{=0}+\frac{1}{2 m \omega} \underbrace{\left[\hat{x}, \hat{p}_{x}\right]}_{=i \hbar}-\frac{1}{2 m \omega} \underbrace{\left[\hat{p}_{y}, \hat{y}\right]}_{=-i \hbar}-\frac{1}{m^{2} \omega^{2}} \underbrace{\left[\hat{p}_{y}, \hat{p}_{x}\right]}_{=0} \\
& =\frac{i \hbar}{m \omega}
\end{aligned}
$$

For $\rho=\mathbf{R}-\mathbf{r}$ we have the component operators:

$$
\begin{aligned}
& \hat{\rho}_{x}=-\frac{1}{2} \hat{x}-\frac{1}{m \omega} \hat{p}_{y} \\
& \hat{\rho}_{y}=-\frac{1}{2} \hat{y}+\frac{1}{m \omega} \hat{p}_{x}
\end{aligned}
$$

That gives:

$$
\begin{aligned}
{\left[\rho_{x}, \rho_{y}\right] } & =\left[-\frac{1}{2} \hat{x}-\frac{1}{m \omega} \hat{p}_{y},-\frac{1}{2} \hat{y}+\frac{1}{m \omega} \hat{p}_{x}\right] \\
& =\frac{1}{4} \underbrace{[\hat{x}, \hat{y}]}_{=0}-\frac{1}{2 m \omega} \underbrace{\left[\hat{x}, \hat{p}_{x}\right]}_{=i \hbar}+\frac{1}{2 m \omega} \underbrace{\left[\hat{p}_{y}, \hat{y}\right]}_{=-i \hbar}-\frac{1}{m^{2} \omega^{2}} \underbrace{\left[\hat{p}_{y}, \hat{p}_{x}\right]}_{=0} \\
& =-\frac{i \hbar}{m \omega}
\end{aligned}
$$

Here \hat{X} and \hat{Y} and $\hat{\rho}_{x}$ and $\hat{\rho}_{y}$ respectively commute as a phase space where we have replaced $\hbar \rightarrow \hbar / m \omega$. This means that there are unceartainty relations between the operators, and that they can not be known simultaniously. We now introduce $l_{B}^{2}=\hbar / m \omega$ such that

$$
\begin{equation*}
[\hat{X}, \hat{Y}]=\left[\hat{\rho}_{y}, \hat{\rho}_{x}\right]=i l_{B}^{2} \tag{4}
\end{equation*}
$$

d)

$$
\hat{a}=\frac{1}{\sqrt{2} l_{B}}(\hat{X}+i \hat{Y}) \quad \hat{b}=\frac{1}{\sqrt{2} l_{B}}\left(\hat{\rho}_{x}-i \hat{\rho}_{y}\right)
$$

We know that \hat{X}, \hat{Y} and $\hat{\rho}_{x}, \hat{\rho}_{y}$ are made up of hermitian operators, and thus:

$$
\hat{a}^{\dagger}=\frac{1}{\sqrt{2} l_{B}}(\hat{X}-i \hat{Y}), \quad \hat{b}^{\dagger}=\frac{1}{\sqrt{2} l_{B}}\left(\hat{\rho}_{x}+i \hat{\rho}_{y}\right)
$$

where $l_{B}=\sqrt{\frac{\hbar}{|e B|}}$. Then:

$$
\begin{aligned}
{\left[\hat{a}, \hat{a}^{\dagger}\right] } & =\frac{1}{2 l_{B}^{2}}[\hat{X}+i \hat{Y}, \hat{X}-i \hat{Y}] \\
& =\frac{1}{2 l_{B}^{2}}(\underbrace{[\hat{X}, \hat{X}]}_{=0}+\underbrace{[\hat{X},-i \hat{Y}]+[i \hat{Y}, \hat{X}]}_{=-2 i[\hat{X}, \hat{Y}]}+\underbrace{[i \hat{Y},-i \hat{Y}]}_{=0}) \\
& =\frac{-2 i^{2} l_{B}^{2}}{2 l_{B}^{2}} \\
& =1 \\
{\left[\hat{b}, \hat{b}^{\dagger}\right] } & =\frac{1}{2 l_{B}^{2}}\left[\hat{\rho}_{x}-i \hat{\rho}_{y}, \hat{\rho}_{x}+i \hat{\rho}_{y}\right] \\
& =\frac{1}{2 l_{B}^{2}}(\underbrace{\left[\hat{\rho}_{x}, \hat{\rho}_{x}\right]}_{=0}+\underbrace{\left[\hat{\rho}_{x}, i \hat{\rho}_{y}\right]+\left[-i \hat{\rho}_{y}, \hat{\rho}_{x}\right]}_{=2 i\left[\hat{\rho}_{x}, \hat{\rho}_{y}\right]}+\underbrace{\left[-i \hat{\rho}_{y}, i \hat{\rho}_{y}\right]}_{=0}) \\
& =\frac{-2 i^{2} l_{B}^{2}}{2 l_{B}^{2}} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
{\left[\hat{a}, \hat{b}^{\dagger}\right] } & =\left[\hat{X}+i \hat{Y}, \hat{\rho}_{x}+i \hat{\rho}_{y}\right] \\
& =\left[\hat{X}, \hat{\rho}_{x}\right]+i\left[\hat{X}, \hat{\rho}_{y}\right]+i\left[\hat{Y}, \hat{\rho}_{x}\right]-\left[\hat{Y}, \hat{\rho}_{y}\right]
\end{aligned}
$$

As $\left.\left[\hat{X}, \hat{\rho}_{x}\right]=\hat{Y}, \hat{\rho}_{y}\right]$ are trivially zero (they contain only operators that commute) we get:

$$
\begin{aligned}
-i\left[\hat{a}, \hat{b}^{\dagger}\right] & =\left[\hat{X}, \hat{\rho}_{y}\right]+\left[\hat{Y}, \hat{\rho}_{x}\right] \\
& =\left[\hat{X}, \hat{\rho}_{y}\right]+\left[\hat{Y}, \hat{\rho}_{x}\right]
\end{aligned}
$$

The relevant commutators are:

$$
\begin{aligned}
{\left[\hat{X}, \hat{\rho}_{y}\right] } & =-\frac{1}{4}[\hat{x}, \hat{y}]+\frac{1}{2 m \omega}\left[\hat{x}, \hat{p}_{x}\right]+\frac{1}{2 m \omega}\left[\hat{p}_{y}, \hat{y}\right]-\frac{1}{m^{2} \omega^{2}}\left[\hat{p}_{x}, \hat{p}_{y}\right] \\
& =\frac{1}{2 m \omega}\left(\left[\hat{x}, \hat{p}_{x}\right]-\left[\hat{y}, \hat{p}_{y}\right]\right) \\
& =0 \\
{\left[\hat{Y}, \hat{\rho}_{x}\right] } & =\frac{1}{2 m \omega}\left(\left[\hat{y}, \hat{p}_{y}\right]-\left[\hat{x}, \hat{p}_{x}\right]\right) \\
& =0
\end{aligned}
$$

such that

$$
-i\left[\hat{a}, \hat{b}^{\dagger}\right]=0
$$

And similarily $[\hat{a}, \hat{b}]=\left[\hat{a}^{\dagger}, \hat{b}^{\dagger}\right]=0$.
This means that the operators $\hat{a}, \hat{a}^{\dagger}, \hat{b}, \hat{b}^{\dagger}$ follow the same algebra (and the same physics) as two independent harmonic oscillators.
e) The hamiltonian is:

$$
H=\frac{1}{2 m}(\mathbf{p}-a \mathbf{A})^{2}=\frac{1}{2} m \mathbf{v}^{2}
$$

We found the velocity in (2), and by using the result (3), we see we get:

$$
\begin{align*}
H & =\frac{1}{2} m(\tilde{\omega} \times(\mathbf{r}-\mathbf{R}))^{2} \\
& =\frac{1}{2} m(-\tilde{\omega} \times \tilde{\rho})^{2} \\
& \stackrel{\vec{\omega}}{=} \stackrel{\rightharpoonup}{\rho} \\
& -\frac{1}{2} m \omega^{2} \rho^{2} \tag{5}\\
& =-\frac{1}{2} m \omega^{2}\left(\rho_{x}^{2}+\rho_{y}^{2}\right)
\end{align*}
$$

Expressing these in terms of the ladder operators \hat{b} and \hat{b}^{\dagger} yields:

$$
\begin{align*}
\hat{\rho}_{x} & =\frac{l_{B}}{\sqrt{2}}\left(\hat{b}+\hat{b}^{\dagger}\right), \quad \hat{\rho}_{y}=-\frac{i l_{B}}{\sqrt{2}}\left(\hat{b}-\hat{b}^{\dagger}\right) \tag{6}\\
\hat{H} & =\frac{1}{2} m \omega^{2} \frac{l_{B}^{2}}{2}\left(\left(\hat{b}+\hat{b}^{\dagger}\right)^{2}-\left(\hat{b}-\hat{b}^{\dagger}\right)^{2}\right) \\
& =\frac{1}{4} m \omega^{2} l_{B}^{2}\left(2 \hat{b} \hat{b}^{\dagger}+2 \hat{b}^{\dagger} \hat{b}\right) \\
& =\frac{1}{4} m \omega^{2} l_{B}^{2}\left(2\left[1+\hat{b}^{\dagger} \hat{b}\right]+2 \hat{b}^{\dagger} \hat{b}\right) \\
& =m \omega^{2} l_{B}^{2}\left(\hat{b}^{\dagger} \hat{b}+\frac{1}{2}\right) \\
& =m \omega^{2} \frac{\hbar}{m|\omega|}\left(\hat{b}^{\dagger} \hat{b}+\frac{1}{2}\right) \\
& =\hbar \omega\left(\hat{b}^{\dagger} \hat{b}+\frac{1}{2}\right) \tag{7}
\end{align*}
$$

This is the hamiltonian for the harmonic oscillator, and has the energy spectrum $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$ independent of m . This means that for each energy there are m degenrate states. The angular momentum operator is:

$$
L=m\left(x v_{y}-y v_{x}\right)+\frac{e B}{2} r^{2}=m \mathbf{r} \times \mathbf{v}+\frac{e B}{2} \mathbf{r}^{2}
$$

From earlier, we had $\mathbf{r}=\mathbf{R}-\vec{\rho}, \mathbf{v}=-\vec{\omega} \times \vec{\rho}$. Then:

$$
\begin{aligned}
L & =m(\mathbf{R}-\vec{\rho}) \times(-\vec{\omega} \times \vec{\rho})+\frac{e B}{2}(\mathbf{R}-\vec{\rho})^{2} \\
& =m(-\vec{\omega}[(\mathbf{R}-\vec{\rho}) \cdot \vec{\rho}]-\vec{\rho}[\underbrace{(\mathbf{R}-\vec{\rho}) \cdot(-\vec{\omega})}_{=0}])+\frac{e B}{2}(\mathbf{R}-\vec{\rho})^{2} \\
& =-m \vec{\omega}\left(\vec{\rho} \cdot \mathbf{R}-\vec{\rho}^{2}\right)+\frac{e B}{2}\left(\mathbf{R}^{2}-2 \mathbf{R} \vec{\rho}+\vec{\rho}^{2}\right) \\
& =m \vec{\omega}\left(\vec{\rho}^{2}-\vec{\rho} \cdot \mathbf{R}\right)-m \omega\left(\frac{\mathbf{R}^{2}}{2}-\vec{\rho} \cdot \mathbf{R}+\frac{\vec{\rho}^{2}}{2}\right)
\end{aligned}
$$

Since L is zero except for the z component, we can drop the vector notation and have

$$
L=\frac{1}{2} m \omega\left(\vec{\rho}^{2}-\mathbf{R}^{2}\right)
$$

Quantizing this, and remembering from (5) and (7), we have:

$$
\begin{aligned}
\vec{\rho}^{2} & =\frac{l_{B}^{2}}{2}\left(\left(\hat{b}+\hat{b}^{\dagger}\right)^{2}-\left(\hat{b}-\hat{b}^{\dagger}\right)^{2}\right) \\
& =\frac{l_{B}^{2}}{2}\left(2\left[1+\hat{b}^{\dagger} \hat{b}\right]+2 \hat{b}^{\dagger} \hat{b}\right) \\
& =\frac{l_{B}^{2}}{2}\left(4 \hat{b}^{\dagger} \hat{b}+2\right) \\
& =2 l_{B}^{2}\left(\hat{b}^{\dagger} \hat{b}+\frac{1}{2}\right)
\end{aligned}
$$

Then, for \mathbf{R}, we can write X and Y in terms of ladder operators as:

$$
\begin{equation*}
\hat{X}=\frac{l_{B}}{\sqrt{2}}\left(\hat{a}+\hat{a}^{\dagger}\right), \quad \hat{Y}=-\frac{i l_{B}}{\sqrt{2}}\left(\hat{a}-\hat{a}^{\dagger}\right) \tag{8}
\end{equation*}
$$

Which will result in by the same calculation as above in:

$$
\mathbf{R}^{2}=2 l_{B}^{2}\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)
$$

Then:

$$
\hat{L}=m \omega l_{B}^{2}\left(\hat{b}^{\dagger} \hat{b}-\hat{a}^{\dagger} \hat{a}\right)=\hbar\left(\hat{b}^{\dagger} \hat{b}-\hat{a}^{\dagger} \hat{a}\right)
$$

with eigenvalues:

$$
l_{m n}=\hbar(n-m)
$$

f) We want to calculate the expectation values $\langle z| \hat{x}|z\rangle$ and $\langle z| \hat{y}|z\rangle$ for the coherent degenerate groundstate $|z\rangle$ that fullfills $\hat{a}|z\rangle=z|z\rangle$ and $\hat{b}|z\rangle=0$. From $\hat{\mathbf{r}}=\hat{\mathbf{R}}-\hat{\rho}$, we get:

$$
\hat{x}=\hat{X}-\hat{\rho}_{x}, \quad \hat{y}=\hat{Y}-\hat{\rho}_{y}
$$

Using the expressions in (6) and (8):

$$
\begin{aligned}
\langle z| \hat{x}|z\rangle & =\langle z| \hat{X}|z\rangle-\langle z| \hat{\rho}_{x}|z\rangle \\
& =\langle z| \frac{l_{B}}{\sqrt{2}}\left(\hat{a}+\hat{a}^{\dagger}\right)|z\rangle-\langle z| \frac{l_{B}}{\sqrt{2}}\left(\hat{b}+\hat{b}^{\dagger}\right)|z\rangle \\
& =\frac{l_{B}}{\sqrt{2}}\left(\langle z| \hat{a}|z\rangle+\langle z| \hat{a}^{\dagger}|z\rangle-\langle z| \hat{b}|z\rangle+\langle z| \hat{b}^{\dagger}|z\rangle\right)
\end{aligned}
$$

The trick, is to let the let the hermitian conjugated operators act on the bras, and the regular operators on the kets such that $\hat{a}|z\rangle=z|z\rangle,\langle z| \hat{a}^{\dagger}=(\hat{a}|z\rangle)^{\dagger}=\langle z| z^{*}$ and $\hat{b}|z\rangle=0$. We get:

$$
\begin{aligned}
\langle z| \hat{x}|z\rangle & =\frac{l_{B}}{\sqrt{2}}\left(\langle z| z|z\rangle+\langle z| z^{*}|z\rangle\right) \\
& =\frac{l_{B}}{\sqrt{2}}\left(z+z^{*}\right) \\
& =\sqrt{2} l_{B} \operatorname{Re}(z)
\end{aligned}
$$

Onto the next:

$$
\begin{aligned}
\langle z| \hat{y}|z\rangle & =\langle z| \hat{Y}|z\rangle-\langle z| \hat{\rho}_{y}|z\rangle \\
& =-\frac{i l_{B}}{\sqrt{2}}(\langle z| \hat{a}|z\rangle-\langle z| \hat{a}^{\dagger}|z\rangle-\underbrace{\langle z| \hat{b}|z\rangle}_{=0}+\underbrace{\langle z| \hat{b}^{\dagger}|z\rangle}_{=0}) \\
& =-\frac{i l_{B}}{\sqrt{2}}\left(z-z^{*}\right) \\
& =\sqrt{2} l_{B} \operatorname{Im}(z)
\end{aligned}
$$

Writing $|z\rangle$ in the $|m\rangle$ basis gives:

$$
|z\rangle=\sum_{m}|m\rangle\langle m \mid z\rangle=e^{-\frac{1}{2}|z|^{2}} \sum_{m} \frac{z^{m}}{\sqrt{m!}}|m\rangle
$$

This is gotten by use of equation 1.216 in the lecture notes. When considering how many states that fit in $|z\rangle$ in the lowest landau level for a give z, we use :

$$
\langle\hat{x}\rangle^{2}+\langle\hat{y}\rangle^{2}=\langle\hat{r}\rangle^{2}=2 l_{B}^{2}\left(\operatorname{Re}(z)^{2}+\operatorname{Im}(z)^{2}\right)=2 l_{B}^{2}|z|^{2}
$$

This corresponds to a circle in the complex plane with radius $\sqrt{2} l_{B}|z|$ and an area

$$
\begin{aligned}
A & =\pi\left(\sqrt{2} l_{B}|z|\right)^{2} \\
& =2 \pi l_{B}^{2}|z|^{2}
\end{aligned}
$$

The state $|z\rangle$, corresponding to the edge of said circle, has an overlap with the $|m\rangle$ state :

$$
\begin{align*}
|\langle m \mid z\rangle|^{2} & =\left|e^{-\frac{1}{2}|z|^{2}} \sum_{m^{\prime}} \frac{z^{m^{\prime}}}{\sqrt{m^{\prime}!}}\left\langle m \mid m^{\prime}\right\rangle\right|^{2} \\
& =e^{-|z|^{2}} \frac{z^{2 m}}{m!} \\
& =e^{-|z|^{2}} \frac{\left(|z|^{2}\right)^{m}}{m!} \tag{9}
\end{align*}
$$

To find the m state with maximum overlap with $|z\rangle$ we find:

$$
\begin{aligned}
\frac{d}{d|z|^{2}}|\langle m \mid z\rangle|^{2} & =\frac{d}{d|z|^{2}}\left(e^{-|z|^{2}} \frac{\left(|z|^{2}\right)^{m}}{m!}\right) \\
& =-e^{-|z|^{2}} \frac{\left(|z|^{2}\right)^{m}}{m!}+e^{-|z|^{2}} \frac{m\left(|z|^{2}\right)^{m-1}}{m!} \\
& =\frac{e^{-|z|^{2}}\left(|z|^{2}\right)^{m-1}}{m!}\left(-|z|^{2}+m\right)
\end{aligned}
$$

Then we get that $m=|z|^{2}$. Since the overlap falls exponentially, we can up to a good approximation take the state with - z - to be in the pure state m , which means that if we restrict the available space to a circle with radius $r^{2}=2 l_{B}^{2}|z|^{2}$ in the z plane we have that $2 l_{B}^{2}|z|^{2} \leq r^{2}$ and we can restrict m to $2 l_{B}^{2} m \leq r^{2}$. As the area is proportional to r^{2} we see that the number of states increases linearly with the available area in the complex plane. The density is

$$
\rho=\frac{N}{A}=\frac{m}{2 \pi l_{B}^{2} m}=\frac{1}{2 \pi l_{B}^{2}}
$$

g) When introducing the electric field, we get an energy contribution:

$$
H_{E}=-e \vec{E} \cdot \vec{r}=-e E \mathbf{x}
$$

Quantizing this and using the relation $\hat{x}=\hat{X}-\hat{\rho}_{x}$, we get:

$$
\hat{H}_{E}=-e E\left(\hat{X}-\hat{\rho}_{x}\right)=-\frac{l_{B}}{\sqrt{2}} e E\left(\hat{a}+\hat{a}^{\dagger}-\hat{b}-\hat{b}^{\dagger}\right)
$$

Then the total hamiltonian is:

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{E}=\hbar \omega\left(\hat{b}^{\dagger} \hat{b}+\frac{1}{2}\right)-\frac{l_{B}}{\sqrt{2}} e E\left(\hat{a}+\hat{a}^{\dagger}-\hat{b}-\hat{b}^{\dagger}\right)
$$

In order to only consider the lowest landau level, i.e $|m, 0\rangle \equiv|m\rangle$, we need the "effective" hamiltonian for this level:

$$
\hat{H}|m, 0\rangle=\hbar \omega(\underbrace{\hat{b}^{\dagger} \hat{b}|m, 0\rangle}_{=0}+\frac{1}{2}|m, 0\rangle)-\frac{l_{B}}{\sqrt{2}} e E(\hat{a}|m, 0\rangle+\hat{a}^{\dagger}|m, 0\rangle-\underbrace{\hat{b}|m, 0\rangle}_{=0}-\underbrace{\hat{b}^{\dagger}|m, 0\rangle}_{=\sqrt{0+1}|m, 1\rangle})
$$

We see that the last term isn't in the lowest Landau level, thus, we may neglect it. We're left with:

$$
\begin{aligned}
\hat{H}^{\prime}|m, 0\rangle & =\frac{1}{2} \hbar \omega|m, 0\rangle-\frac{l_{B}}{\sqrt{2}} e E\left(\hat{a}+\hat{a}^{\dagger}\right)|m, 0\rangle \\
\hat{H}^{\prime} & =\frac{1}{2} \hbar \omega-\frac{l_{B}}{\sqrt{2}} e E\left(\hat{a}+\hat{a}^{\dagger}\right)
\end{aligned}
$$

In the Heisenberg picture we can find the time evolution of \hat{a} and \hat{a}^{\dagger} and get:

$$
\begin{aligned}
\hat{a}(t)|z\rangle & =\hat{\mathcal{U}}(t, 0) \hat{a} \hat{\mathcal{U}}(0, t)|z\rangle \\
& =\hat{\mathcal{U}}(t, 0) \hat{a}|z(t)\rangle \\
& =\hat{\mathcal{U}}(t, 0) z(t)|z(t)\rangle \\
& =z(t)|z\rangle
\end{aligned}
$$

So:

$$
\begin{aligned}
\hat{a}(t) & =\hat{\mathcal{U}}(t, 0) \hat{a} \hat{\mathcal{U}}(0, t) \\
& =e^{-i t \hat{H}^{\prime}} \hat{a} e^{i \hbar \hat{H}^{\prime}} \\
& =\hat{a}+\frac{i t}{\hbar}\left[\hat{H}^{\prime}, \hat{a}\right]+\frac{1}{2!}\left(\frac{i t}{\hbar}\right)^{2}\left[\hat{H}^{\prime},\left[\hat{H}^{\prime}, \hat{a}\right]\right]+\cdots
\end{aligned}
$$

Calculating the commutator:

$$
\begin{aligned}
{\left[\hat{H}^{\prime}, \hat{a}\right] } & =\left[\frac{1}{2} \hbar \omega-\frac{l_{B}}{\sqrt{2}} e E\left(\hat{a}+\hat{a}^{\dagger}\right), \hat{a}\right] \\
& =-\frac{l_{B}}{\sqrt{2}} e E\left[\left[\begin{array}{c}
\left.\hat{a}+\hat{a}^{\dagger}, \hat{a}\right] \\
\end{array}\right.\right. \\
& =-\frac{l_{B}}{\sqrt{2}} e E(\underbrace{[\hat{a}, \hat{a}]}_{=0}+\underbrace{\left[\hat{a}^{\dagger}, \hat{a}\right]}_{=-1}) \\
& =\frac{l_{B}}{\sqrt{2}} e E
\end{aligned}
$$

Since all operators commute with a scalar, and the "higher order" commutators vanish:

$$
\hat{a}(t)=\hat{a}+\frac{i t l_{B}}{\hbar \sqrt{2}} e E
$$

Then:

$$
\begin{aligned}
\hat{a}(t)|z\rangle & =\left(z+\frac{i t l_{B}}{\sqrt{2}} e E\right)|z\rangle \\
z(t) & =z+\frac{i t l_{B}}{\sqrt{2}} e E
\end{aligned}
$$

which shows that $|z\rangle$ gets a time dependence. In order to show that this corresponds to a drift in the y-direction, let's consider:

$$
\hat{X}(t)=\frac{l_{B}}{\sqrt{2}}\left(\hat{a}(t)+\hat{a}^{\dagger}(t)\right), \quad \text { and } \quad \hat{Y}(t)=-\frac{i l_{B}}{\sqrt{2}}\left(\hat{a}(t)-\hat{a}^{\dagger}(t)\right)
$$

Where $\hat{a}^{\dagger}(t)$ is:

$$
\begin{aligned}
(\hat{a}(t))^{\dagger} & =\left(\hat{a}+\frac{i t l_{B}}{\hbar \sqrt{2}} e E\right)^{\dagger} \\
\hat{a}^{\dagger}(t) & =\hat{a}^{\dagger}-\frac{i t l_{B}}{\hbar \sqrt{2}} e E
\end{aligned}
$$

Then:

$$
\hat{X}(t)=\frac{l_{B}}{\sqrt{2}}\left(\hat{a}(t)+\hat{a}^{\dagger}(t)\right)=\frac{l_{B}}{\sqrt{2}}\left(\hat{a}+\frac{i t l_{B}}{\hbar \sqrt{2}} e E+\hat{a}^{\dagger}-\frac{i t l_{B}}{\hbar \sqrt{2}} e E\right)=\hat{X}
$$

No drift in the \hat{X} direction, onto \hat{Y} :

$$
\begin{aligned}
\hat{Y}(t) & =-\frac{i l_{B}}{\sqrt{2}}\left(\hat{a}+\frac{i t l_{B}}{\hbar \sqrt{2}} e E-\hat{a}^{\dagger}+\frac{i t l_{B}}{\hbar \sqrt{2}} e E\right) \\
& =\hat{Y}(0)+\frac{l_{B}^{2}}{\hbar} e E t=\hat{Y}(0)+\frac{e}{|e B|} E t=\hat{Y}(0)-\frac{E}{|B|} t
\end{aligned}
$$

Then the velocity is:

$$
v_{\mathrm{drift}}=-\frac{E}{|B|}
$$

in the y direction, as $\hat{Y}(t)$ is the movement of the guiding center (center of orbit).

