
FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2022

Return of solutions:
The problem set is available from Friday morning, 30 September.
You may submit handwritten solutions, but they have to be scanned and included in one single file,
which is submitted in Inspera before Friday, 7 October, at 14:00.

Language:
Solutions may be written in Norwegian or English depending on your preference.
Questions concerning the problems:
Please ask Joakim Bergli or Maria Markova.

Problem 1: Supersymmetric quantum mechanics

In this problem we will study a construction that is known as supersymmetric quantum mechanics
(SUSYQM). For the harmonic oscillator, we can construct the operators â and â† that allows us to
find the energy spectrum algabraically without explicitly solving the Schödinger equation. SUSYQM
will allow us a similar construction for certain other potentials.

We study the motion of a particle in a potential V−(x) with the Hamiltonian in the position basis
(we use units where h̄ = 1)

H− =
p2

2m
+ V−(x) = − 1

2m

∂2

∂x2
+ V−(x).

Assume that there exists a function W (x) such that the operators

A =
ip√
2m

+W (x)

A† = − ip√
2m

+W (x)

factorize the Hamiltonian so that H− = A†A. The function W (x) is known as the superpotential.

a) Show that W (x) must satisfy the equation

W 2 − 1√
2m

dW

dx
= V−.

We define the partner Hamiltonian to H− as

H+ = AA† =
p2

2m
+ V+,
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where V+ is called the partner potential to V−. We now define an extended system with the Hamilto-
nian

H =

(
H− 0
0 H+

)
(1)

and the two operators

Q =

(
0 0
A 0

)
Q† =

(
0 A†

0 0

)
.

b) Show that we have the following supersymmetry algebra (which is identical to Eq. (1.233) in the
lecture notes)

{
Q,Q†

}
= H

[Q,H] =
[
Q†, H

]
= 0

{Q,Q} =
{
Q†, Q†

}
= 0.

For this reason we say that the extended system is supersymmetric.

c) Explain what is the difference between the extended system described by the Hamiltonian (1) and
a system of two particles, one in the potential V− and one on the potential V+.

d) Show that the ground state energy of H is nonnegative. That is, if H|Ψ0〉 = E0|Ψ0〉 then E0 ≥ 0.

If E0 = 0 we say that SUSY is unbroken. If E0 > 0 we have broken SUSY. The spectra of the partner
Hamiltonians are related.

e) Show that we have the intertwinig relations

AH− = H+A, A†H+ = H−A
†.

f) Show that this implies that if we have an eigenstate |ψ−n 〉 of H− with eigenvalue E−n then A|ψ−n 〉
is an eigenstate of H+ with the same eigenvalue.

The partner Hamiltonians H− and H+ therefore have the same eigenvalues and are called essentially
isospectral. The only exception to this is the ground state of one of the Hamiltonians for a system with
unbroken SUSY. Let us assume that this is the case for H−, in which case we can choose the ground
state of H on the form

|Ψ0〉 =

(
|ψ−0 〉

0

)
g) Show that if we are to have unbroken SYSY with this ground state we must have A|ψ−0 〉 = 0 so

that there is no corresponding eigenstate of H+.
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h) Show that we have the relation

|ψ+
n 〉 =

A√
E+

n

|ψ−n+1〉

between the eigenstates of H+ and H− with the eigenvalues related by

E+
n−1 = E−n .

i) Show that the ground state wave function is then determined by the equation

ψ−0 (x) = 〈x|ψ−0 〉 = Ne−
√
2m

∫ x
0 W (x′)dx′

.

We will now study the superpotential

W (x) =


∞ x < 0

− b
tanx 0 ≤ x ≤ π
−∞ x > π

(2)

j) Show that for a specific choice of b, the partner potentials take the form

V− = − 1

2m

V+ = − 1

2m
+

1

m sin2 x

on the interval 0 ≤ x ≤ π with both potentials being∞ outside this interval. Specify the value of
b that gives these potentials.

k) The potential V− corresponds to the well known case of a particle in an infinite square well. Either
solve this problem or write down the solution (eigenstates and eigenvalues) from your favorite
textbook.

l) Use the relations between V− and V+ derived above to determine the eigenvalues and eigenstates
of H+.

The above calculation gives an example where we could determine exact analytic expressions for the
eigenstates and eigenvalues of the potential V+ from the fact that we knew the corresponding results
for the simpler potential V−. In some cases we can do even better and determine the full spectrum and
eigenstates directly. Assume that we have a family of partner potentials V±(ao, x) that depends on
some real parameter a0. This family is called shape invariant if there exist real functions a1 = f(a0)
and g(a0) such that

V+(a0, x) + g(a0) = V−(a1, x) + g(a1)

with the corresponding relation

H+(a0, x) + g(a0) = H−(a1, x) + g(a1)

for the Hamiltonians.
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m) Show that for a shape invariant superpotential, the Hamiltonians H+(a0, x) and H−(a1, x) have
the same eigenstates, and that the energy eigenvalues are related by

E+
n (a0) = E−n (a1) + g(a1)− g(a0).

n) Assume that SUSY is unbroken for all an generated recursively from a0 by an+1 = f(an) and
that E−0 (an) = 0. Show that the energy spectrum of H−(a0) is given by

E−n (a0) = g(an)− g(a0). (3)

o) Show that the corrsponding energy eigenstates are

|ψ−n (a0)〉 =
A†(a0)√
E+

n−1(a0)
· · · A†(an−2)√

E+
1 (an−2)

A†(an−1)√
E+

0 (an−1)
|ψ−0 (an)〉 (4)

We now return to the superpotential (2) that we studied above. To simplify the expressions, we will
choose the mass so that

√
2m = 1.

p) Show that we have

V+(b, x) = V−(b+ 1, x) + (b+ 1)2 − b2.

Use this to show that we can generate a family of shape invariant potentials by choosing the initial
parameter value a0 to be any b, and determine the associated functions f(b) and g(b).

q) Choosing the starting value a0 = 1 corresponds to the infinite square well. Using the relation (3),
find the energy eigenvalues of this system. Use (4) to find the wave functions for the two lowest
energy eigenstates. Admittedly, this is a very complicated way to calculate something that we
know in advance how to derive in a simple way.
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