FYS 4110 Modern Quantum Mechanics, Fall Semester 2022

Solutions to problem set 11

11.1 The canonical commutation relations.

|:Aka7 Ek’a

We need to express the ladder operators in terms of A and Ef, by inspection, we see that:
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from which we calculate:

al 1 2wk 60
g, 5
Then:
At 2wk € 4
|:a’ka/ ) ak/a/j| —

260 )
/2 [ 2w [ 92
€0 Eka) , ( Wk 60 k/ / 60 Elt’ )

1 260 WEW! 260 Wk At
o[ g ¢ [ [
=0
1 ,260 W' |:A 260 N ~t b
Bl R i Eya, A } 7[E s By
+4 ’ h Wi ka h,/wkwk/ ka» Pica E
=0
_ € [Wk T2 il (€0 W [ 2 At
n Z% W’ [Aka?Eklal} B Zﬁ Wi [Eka,Aklal}
N——
:7i%§kk’5aa’
Looking at the last commutator:
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So far, we have:

N At . 60 Wik h . €0 Wi! h
|:akaa ak'a’i| = W <_Z€5kk/6aa > zh\ / ( €0 5k’k6a a
w Wt
= “ b 5kk’ aa’ + i 5k’k6a a
W
= 3 < k + Wk,) 6kk’ 6aa’
2 \/ W' \/ Wk

Oxx Will either return zero if k # k/, or 1 if k = K/, in the latter case, , /;"—]j + 4/ ‘:’J—’: = 2, and if not,

the expression has no contribution, thus, we can neglect it and get the desired result:

e
[akaa ak/a/ - 5kk’6aa’

11.2 Charged particle in a strong magnetic field (Midterm Exam 2005).

a) From Newtons second law:
m— =e(v x B) (1)

for a particle moving in a magnetic field (E = 0). The velocity is restricted to the xy-plane, and
the magnetic field is in the z-direction. Thus, by integration:

dv eB
— = x k
dt m P )
B
—v = & (rxk)+C
m
B
= —Pyxr +C
m
We recognize this as the expression for angular velocity with w = —% where C is a constant that

can be determined from the initial conditions. We can parametrize C to a vector on the same form
C = —w X rg where r is a constant:

V = WXr—axrg
v = WX (r—rp) 2)
We see that this represents constant angular motion around the centre rg with angular frequency
B
w= -2
m

To check if Lyyer, = m(xvy — yv,) is a constant of motion, we start by calculating:

m% = evxB
gk
= qlvz vy O
0 0 B

= vyBi—v,Bj
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Then:

dLmek
dt

dat a atr Var
G ram® Wy S
T T di

MUgvy — eBrv, — muyv, — eByvy
—eB (zvy + yuy)

—eBr - v

dr
—eB
(v )
B, dr dr
2 dt  dt

eBd2

2 dt’

As we see, %Lmek # 0, and thus not a constant of motion. Instead we have that L = L, +

(eB/2)r? is conserved as:

L dLmek+eBd2

dt dt 2 dt
_ BAd 2y
B A
=0

b) To check if R is a constant of motion, we take the derivative:

iR
dt

dr 1d

dt te w dt (kxv)

dr 1 dv
k

dt + dt

v—i——kx(va)
mw

v—i—%(v(k‘B)—B(k-v))

eB
V+4+ —vVv
mw

n eB m
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Which it is. Inserting (2) into the expression for R we have:
1
R = r+—-kxv
w

1
= r+ —kxdx(r—rp)

w
= r+l J-[k-(r—rg) | —(r—ro) (k- )
“ =0 =w
= r—(r—rp)
R =1 3)

So R points to the centre of the circular orbit. p'is given by:

p = R-r

= Io—Tr
So p points from the particle to the centre of orbit.

c¢) If we use (from the problem set):

(p—eA)
) m

= —(p—l—gpr)
m 2

1 B
= <p—|—er><k>
m 2

where p denotes the canonical momentum, we can express R with p and r only :
1
R = r+-kxv
w

1 B
= r+ —kx (p—l—erxk)
mw 2

1 B

= r+— kxp—l—e—kx[rxk]
mw 2 ~e——

=r
1 eB

= r+— kxp +
MW N —’ 2mw
=*Py'£+sz _ 1

r

1 1 2 ~
- (1 - 2> + oy (i 1)

1 1 - 1 N 1 .
= - — — i - —_
2 mwpy 2y mwpx J

Xi+ Yj

We can now express these as QM operators by replacing » —  and p — p with the commutation
relations

[75,0] = ihdj
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This gives:
N 1 1
X = —-2——9p
2$ mwpy
A 1. 1 .
Y = §y_7px
mw
These commute as:
JN 1 1 1 1
X,Y} = |=Z— —Dy, =+ —p
[ {2:6 mw’ Y 2y+mwpx
1., . 1 . 1 . A
= &9+ 52 ba] = 5 [Py, U] — 55 [Py: Pal
=0 =ih =—ih =0
_h
 mw
For p = R — r we have the component operators:
. 1, 1.
= —_—r — —
Pz ) mwpy
. 1, 1
Py = _iy‘i'ipx
That gives:
[ | = 1. 1 . 1A+ 1 .
Pz, Pyl = 21‘ mwpya 2?/ mwpx
1. . | 1 . A
= &9 = 5 (& Da] + 5Dy, §] = 33 [Py, D]
= =ih =—ih =0
_ i
N mw

Here X and Y and Pz and p, respectively commute as a phase space where we have replaced
h — h/mw. This means that there are unceartainty relations between the operators, and that they
can not be known simultaniously. We now introduce 1% = h/mw such that

(X, Y] = [py, pu] = il% (4)
D 1 1
~ — X Y Z‘): Ax_ N
¢ \/§ZB< +i¥) Vai, e i)

We know that X ,Y and Pz Py are made up of hermitian operators, and thus:
1

1 . . .
At . +_ N A
at = X —iv), b= v+ i

\/§ZB( ) \/§l3(p o)
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[ R
where [ = m Then:
e

[a,a*} - %'XMY,X—W]
2 |
_ % (X, X] 4+ [%, =] + [i7, X] + [, -7
T ——2i[%,7] =0
2%
2
= 1
i) = Q;%[ﬁz—iﬁwﬁﬁiﬁy]

1 A A A A A a
= o7 | [Pes be] + [Daipy] 4 [=ipy, pe] + [—ipy, 10y]
N——r

21%
=0 =2i[papy] =0
—2¢%1%
213
= 1
[&,BT} = [Xﬂ'f/,ﬁxﬂf)y}

Xope] +1 | K] 40 (Vo] = V04

As [X, pg] = Y, py] are trivially zero (they contain only operators that commute) we get:
fa] = [£a) 4 [7)
= [X.0]+ V.0
The relevant commutators are:

1 . 1

(%0 = 30+ g [0he) + g [Py 8]~ g e
= 5o ([~ [0 y)
— 0

V] = 5 (.60~ 05
— 0

such that
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And similarily {a,i)} - [aT,BT] —0.

This means that the operators @, a', 13, b follow the same algebra (and the same physics) as two
independent harmonic oscillators.

e) The hamiltonian is:

1 1
H = %(p—aA)2 = §mv2

We found the velocity in (2), and by using the result (3), we see we get:

%m (@ x (r —R))?

A
I

—omw? (o + py) (5)

Expressing these in terms of the ladder operators b and bf yields:

ﬁx:%(ﬂl}*), py:—il—B(é—BT> 6)

H = ;mwQ% ((B+BT>2 — (5— Z)T)2>

= hw <6Tz§ + ;) (7

This is the hamiltonian for the harmonic oscillator, and has the energy spectrum E,, = fiw (n + 3)
independent of m. This means that for each energy there are m degenrate states. The angular
momentum operator is:

B,

B
L:m(:cvy—yvx)—i—%rzzmrxv—k%r
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From earlier, we hadr = R — g, v = —& X p. Then:

L = m(R—ﬁ)x(—wxﬁH?(R—p’)Q
= m|-GR-p) A5 |R=7) () | +5 R p)
—_—
=0

— (R*—2R/7 + )

2 2
= mcU(p_Q—ﬁ-R)—mw(I;—p_"R—l-[;)

Since L is zero except for the z component, we can drop the vector notation and have

L= %mw (p_’2 — R2)

Quantizing this, and remembering from (5) and (7), we have:

R (CUSGy

— B (454 2)

a1
= 2% <bTb + )
2
Then, for R, we can write X and Y in terms of ladder operators as:

X:%(awﬁ), Y:—@(a—aT) ®)

Which will result in by the same calculation as above in:
2 2 (atn, L
R = 2lB a'a+ 5

Then:
L=mwl} (13*13 - a*a) —n (BTb - aT&)

with eigenvalues:
Ly = B (n —m)

f) We want to calculate the expectation values (z|Z|z) and (z|g|2) for the coherent degenerate ground-
state |z) that fullfills a|z) = z|z) and b|z) = 0. From t = R — p, we get:

~ A~

=X —pa G=V —py
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Using the expressions in (6) and (8):

Glils) = (elX12) - (eloal2)
_ <zylf§ (a+af) |2 - <z\lf§ (b+51) I2)
_ % (¢2lal2) + (21af|2) = (21bl2) + (216]2))

The trick, is to let the let the hermitian conjugated operators act on the bras, and the regular
operators on the kets such that a|z) = z|z), (z|al = (a]z))T = (z]2* and b|z) = 0. We get:

) = li z|z|z z|2%|z
(z]8]z) = \/5(< |2]2) + (z[2"|2))
_ s z+ 2"
= V2igRe(2)
Onto the next:
(2l912) = (2[Y]z) — (z]py|2)
= —il—B zlalz) — (z]at]2) — (z|b]2 2|bt]2
= \/§<|><||><:b(|)>+<i0|>
- s z—2z"
= V2igIm(2)

Writing |z) in the |m) basis gives:

2 = S m)ml) = ¢ B S0 2 )

m

This is gotten by use of equation 1.216 in the lecture notes. When considering how many states
that fit in |z) in the lowest landau level for a give z, we use :

(#)” + (5)° = (1) = 20 (Re () +Tm (2)?) = 203} | =
This corresponds to a circle in the complex plane with radius v/2/p | 2 | and an area
2
A= (\/ﬁlB | z |)
= 27l% | 2 |2

The state |z), corresponding to the edge of said circle, has an overlap with the |m) state :

m/

2 _ _l|z\2z z "2
o) = eSS Tt |
m
o122
m!

e l2 (| c ‘2)7"

m!

©)
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To find the m state with maximum overlap with |z) we find:

d s> d (R
aep e = d]z|2<e ml

_efww i ef|z|2”””(|z—|2)m_1
m! m!
e 1217 (‘ p ‘2)mfl

Then we get that m =| z |. Since the overlap falls exponentially, we can up to a good approx-
imation take the state with —z— to be in the pure state m, which means that if we restrict the
available space to a circle with radius 72 = 21%|2|? in the z plane we have that 2/%|z|? < r? and
we can restrict m to QZ%m < r2. As the area is proportional to 7 we see that the number of states
increases linearly with the available area in the complex plane. The density is

_N_ mo 1
p_A_Qﬂ'l?Bm_QWFB

g) When introducing the electric field, we get an energy contribution:
Hgp = —¢E - 7= —eEx

Quantizing this and using the relation & = X - Dz, WE get:

flp = —eE (X - ) :_%6E<d+&1_5_51)

Then the total hamiltonian is:

A~ A~ A~ ALn 1 ZB ~ ~
H=H+ Hp = hw bTb+> ~ 2B (a+al —b-0)
T ( 2) V2
In order to only consider the lowest landau level, i.e |m,0) = |m), we need the “effective” hamil-
tonian for this level:

N N 1 l A A
Hlm,0) = hw [ b70m,0) + =|m,0) | — —ZeE | a|m,0) + af|lm,0) — bjm,0) — bjm, 0)
—— 2 \/5 ~——" ——
=0 =0 =0+1|m,1)
We see that the last term isn’t in the lowest Landau level, thus, we may neglect it. We’re left with:
. 1 I
H'm,0) = =hw|m,0 ——eE(&—l—dT) m, 0
m.0) = ghlm,0) — m.0)
. 1 I
= Shw-“Lep (a+al)
2 V2

a(t)]z) =
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So:

Q>
)
~
N2
I

U(t,0)ald (0, )
efitH’ aQ eihﬂ’

= ang [ e () [ el

Calculating the commutator:

[ff’,a] _ [17@ B .g (&+ aT) ,a]

Since all operators commute with a scalar, and the “higher order” commutators vanish:

itlp
a(t) =a+ ——=ek
(t) i

Then:

a(t)lz) = (z—i—?}?eE) |2)
z(t) = z—i-%eE

V2

which shows that |z) gets a time dependence. In order to show that this corresponds to a drift in
the y-direction, let’s consider:

Xy =8 (d(t) + a*@)) Cand V()= -"E (d(t) - aT(t))

V2 V2
Where af(t) is:
R . itlp
@) = G+ 2B
A.‘_ o A.i_ ZtlB
a'(t) = a'— —=ek
(t) P~

Then: l l l

R N B (. itlp R itlp

B +af(t ——<+E+ T—E>
(a() a()) ¢ hﬂe “ h\/§€

Il
N)
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No drift in the X direction, onto Y:

itlp

N ilp
Yit) = ——= d—i—eE—&T—i—eE)
®) ﬂ( 2 2

YO+ Bemi— V) + B =V(0) - L
- Rt [eB | | B
Then the velocity is:
E
Ydrift = _‘ B|

in the y direction, as }A/(t) is the movement of the guiding center (center of orbit).

12



