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Problem set 4

4.1 Gaussian integrals

I =

∫ ∞
−∞

dxe−λx
2

I2 =

∫ ∞
−∞

∫ ∞
−∞

dxdye−λ(x
2+y2)

In polar coordinates:

I2 =

∫ 2π

0
dθ

∫ ∞
0

re−λr
2
dr = 2π

∫ ∞
0

re−λr
2
dr = π

∫ ∞
0

dr 2re−λr
2

Subsituting u = −λr2 ⇒ − 1

λ
du = 2r dr, we get:

I2 = −π
λ

∫ −∞
0

eu =
π

λ
⇐⇒ I =

√
π

λ
(1)

Equivalence due to the fact that eu > 0 for all u.

Computing the next integral:

I ′ ≡
∫ ∞
−∞

dxe−λx
2+ax+b

Completeing the square in the exponent:

−λx2 + ax+ b = −λ
(
x2 − a

λ
x− b

λ

)
= −λ

(
x2 − a

λ
x+

( a
2λ

)2
−
( a

2λ

)2
− b

λ

)
= −λ

((
x− a

2λ

)2
−
( a

2λ

)2
− b

λ

)
= −λ

(
x− a

2λ

)2
+
a2

4λ
+ b

Then we get:

I ′ =

∫ ∞
−∞

dxe−λ(x−
a
2λ)

2
+a2

4λ
+b = e

a2

4λ
+b

∫ ∞
−∞

dxe−λ(x−
a
2λ)

2

Substituting:

u = x− a

2λ
⇒ du = dx =⇒ I ′ = e

a2

4λ
+b

∫ ∞
−∞

e−λu
2

Using the result from (1) gives us

I ′ =

√
π

λ
e
a2

4λ
+b
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4.2 Path integral for free particle

a) Consider the bracketed term in the exponent

(x1 − xi)2 + (x2 − x1)2 = 2x2
1 − 2(xi + x2)x1 + x2

i + x2
2

= 2

[
x2

1 − (xi + x2)x1 +
(xi + x2)2

4

]
+ x2

i + x2
2 −

(xi + x2)2

2

= 2

(
x1 −

xi + x2

2

)2

+
1

2
(x2 − xi)2.

We change the integration variable to u = x1 − xi+x2
2 and get

I1 = N2
∆t

∫
due

im
2h̄∆t

2u2
e

im
2h̄∆t

1
2

(x2−xi)2
=

√
m

2πih̄ · 2∆t
e

im
2h̄·2∆t

(x2−xi)2
,

where we use Eq (1) and N∆t =
√

m
2πih̄∆t .

b) The integral over x2 is similar, in the exponent we will have

1

2
(x2 − xi)2 + (x3 − x2)2 =

3

2

(
x2 −

xi + 2x3

3

)2

+
1

3
(x3 − xi)2.

We change the integration variable to u = x2 − xi+2x3
3 and get

I2 =

√
m

2πih̄ · 3∆t
e

im
2h̄·3∆t

(x3−xi)2
.

c) We guess that the general form is

Ik−1 =

√
m

2πih̄ · k∆t
e

im
2h̄·k∆t

(xk−xi)2
. (2)

Then we get

Ik =

√
m

2πih̄∆t

√
m

2πih̄ · k∆t

∫
dxke

im
2h̄∆t [

1
k

(xk−xi)2+(xk+1−xk)2]. (3)

For the exponent we find

1

k
(xk − xi)2 + (xk+1 − xk)2 =

k + 1

k

(
xk −

k

k + 1
(
1

k
xi + xk+1)

)2

+
1

k + 1
(xk+1 − xi)2 (4)

Ik =

√
m

2πih̄ · (k + 1)∆t
e

im
2h̄·(k+1)∆t

(xk+1−xi)2

. (5)
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which is of the same form as (2), and therefore inductively we get

In−1 =

∫
Dx(t)e

i
h̄
S =

√
m

2πih̄T
e
im
2h̄T

(xf−xi)2
. (6)

This is the same as Eq. (1.109) in the lecture notes.

4.3 Path integral for harmonic oscillator

a)

x(t) = xcl(t) +

∞∑
n=1

cn sin

(
nπ

t− ti
T

)
(7)

S[x(t)] =

∫ tf

ti

dt

[
1

2
mẋ2 − 1

2
mω2x2

]
. (8)

The first term is given by (1.106) in the lecture notes, and we have to consider the second term

∫ tf

ti

dtx2 =

∫ tf

ti

dt

x2
cl +

∑
n,n′

cncn′ sin

(
nπ

t− ti
T

)
sin

(
n′π

t− ti
T

) =

∫ tf

ti

dtx2
cl+

T

2

∑
n

c2
n.

(9)
From this we see that the action can be written

S[x(t)] = S[xcl(t)] +
mT

4

∑
n

[(nπ
T

)2
− ω2

]
c2
n.

b)

G(xf tf , xiti) =

∫
Dx(t)e

i
h̄
S[x(t)]

= N ′e
i
h̄
S[xcl(t)]

∏
n

∫
dcne

mT
4

[
(nπT )

2−ω2
]
c2n

= Ne
i
h̄
S[xcl(t)]

∏
n

[
1−

(
ωT

nπ

)2
]−1/2

where we have used that each integral is of the form

∫
dcne

mT
4

[
(nπT )

2−ω2
]
c2n =

√√√√ 4iπh̄

mT
[(

nπ
T

)2 − ω2
]
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and we have collected all the constants from each of these integrals together with N ′ into the
normalization constant N . Using ∏

n

(
1− a2

n2

)
=

sin aπ

aπ

we get

G(xf tf , xiti) = Ne
i
h̄
S[xcl(t)]

[
sinωT

ωT

]−1/2

.

In the limit ω → 0 we have sinωT
ωT → 1 and to recover Eq. (6) we must have

N =

√
m

2πih̄T

so that

G(xf tf , xiti) =

√
mω

2πih̄ sinωT
e
i
h̄
S[xcl(t)]. (10)

c) The calculations are simplified if we note the following

∫ tf

ti

dtẋ2
cl = [xclẋcl]

tf
ti
−
∫ tf

ti

dtxclẍcl = [xclẋcl]
tf
ti

+ ω2

∫ tf

ti

dtx2
cl (11)

where we used the equation of motion ẍcl = −ω2xcl. The last term in this expression cancels the
last term in the action and we find that

S[xcl(t)] =
1

2
m [xclẋcl]

tf
ti

(12)

The equation of motion has the general solution

x(t) = A cosωt+B sinωt (13)

The boundary conditions are

x(ti) = A cosωti +B sinωti = xi

x(tf ) = A cosωtf +B sinωtf = xf

from which we find

A =
xi sinωtf − xf sinωti

sinωT
B =

xf cosωti − xi cosωtf
sinωT

(14)

The classical path is

xcl =
xi sinω(tf − t) + xf sinω(t− ti)

sinωT
(15)

Using (12) we now get

S[xcl(t)] =
mω

2 sinωT

[
(x2
f + x2

i ) cosωT − 2xfxi
]
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d) We have

∂2Scl
∂xf∂xi

=
mω

sinωT

Inserting into in Eqs. (1.119) and (1.116) of the lecture notes we find

G(xf tf , xiti) =

√
1

2πih̄

∣∣∣∣ ∂2Scl
∂xf∂xi

∣∣∣∣e ih̄S[xcl(t)] =

√
mω

2πih̄ sinωT
e
i
h̄
S[xcl(t)].

which agrees with Eq (10)

4.4 The Aharonov-Bohm effect

a) We calculate the magnetic field, which will only have a component in the z-direction

Bz =
∂Ay
∂x
− ∂Ax

∂y
= 0 (16)

if r > 0. But the integral of A around a circle of radius r is∮
C
A · dr = 2πk = Φ (17)

which shows that k = Φ/2π and that there has to be an infinite field at the origin to give this flux.

b) In the semiclassical approximation the propagator is given as:

p(y) = λ |G(rP , t; rS , 0)|2 = λ

∣∣∣∣∣N
2∑

n=1

eiSn/h̄

∣∣∣∣∣
2

= λ
∣∣∣N (eiS1/h̄ + eiS2/h̄

)∣∣∣2
Here S1 and S2 are the action on classical paths. The action is given by S [r(t)] =

∫ t
0 Ldt, and we

introduce the difference ∆S = S2 − S1, and calculate:

p(y) = λ |N |2
∣∣∣(eiS1/h̄ + ei(∆S+S1)/h̄

)∣∣∣2
= λ

∣∣∣NeiS1/h̄
∣∣∣2 ∣∣∣(1 + ei∆S/h̄

)∣∣∣2
= λ |N |2

∣∣∣eiS1/h̄
∣∣∣2︸ ︷︷ ︸

=1

(
1 + ei∆S/h̄

)(
1 + e−i∆S/h̄

)

= λ
∣∣∣NeiS1/h̄

∣∣∣2(1 + e−i∆S/h̄ + ei∆S/h̄ + ei∆S/h̄e−i∆S/h̄︸ ︷︷ ︸
=1

)
= λ |N |2

(
2 + e−i∆S/h̄ + ei∆S/h̄

)
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Using the identity cos θ = 1
2

(
eiθ + e−iθ

)
gives us:

p(y) = 2λ |N |2
(

1 + cos
∆S

h̄

)
(18)

c) We define the length along path 1 as L1 and the length along path 2 as L2, and assume the electrons
travel with constant velocities velocities v1 and v2 along the respective paths, and that each path
has the same length in time. Given the lagrangian L (r, ṙ) = 1

2mṙ2 + eA(r) · ṙ, the the actions
S1, S2 along the paths become:

S1 =

∫ t

0

1

2
mv2

1dt+ e

∫ t

0
A(r1) · ṙ1dt =

1

2
mv2

1t+ e

∫ P

S
A(r1) · dr1 =

1

2
m
L2

1

t
+ e

∫ P

S
A(r1) · dr1

S2 =

∫ t

0

1

2
mv2

2dt+ e

∫ t

0
A(r2) · ṙ2dt =

1

2
mv2

2t+ e

∫ P

S
A(r2) · dr2 =

1

2
m
L2

2

t
+ e

∫ P

S
A(r2) · dr2

Where I used
∫
`A(r) · dr =

∫
A(r) · dr

dt
dt =

∫
A(r) · ṙdt. Considering the difference ∆S:

∆S =
1

2
m
L2

2

t
+ e

∫ P

S
A(r2) · dr2 −

1

2
m
L2

1

t
− e

∫ P

S
A(r1) · dr1

=
m

2t

(
L2

2 − L2
1

)
+ e

(∫ P

S
A(r2) · dr2 −

∫ P

S
A(r1) · dr1

)
=

m

2t

(
L2

2 − L2
1

)
+ e

(∫ P

S
A(r2) · dr2 +

∫ S

P
A(r1) · dr1

)
=

m

t
L̄∆L+ e

∮
C
A · dr (19)

We have used that the line integral from S to P over the first path plus the line integral back over
another path can be written as a line integral around the curve spanned by the paths, and since the
magnetic flux is Φ =

∮
C A · dr this gives:

∆S =
m

t
L̄∆L+ eΦ (20)

Where L̄ = 1
2 (L2 + L1) and ∆L = (L2 − L1). This shows it can be written as a function of Φ if

we consider the paths fixed.

d) As the vector potential in part a) shows, the vector potential is nonzero everywhere, also outside of
the region with magnetic field. So the electron feels directly the presence of the vector potential,
which means that it would have to be considered as equally real as the magnetic field. This is
curious, since it does not have a specific value at a given point, because this value can be changed
by gauge transformations.

e) The Aharonov-Bohm effect does not depend on the choice of gauge becuse the only measurable
quantity is the difference of the action integrals, which is only a function of the magnetic flux
which is gauge invariant.
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f) Inserting (20) into (18) yields:

p(y) = 2λ |N |2
(

1 + cos
∆S

h̄

)
= 2λ |N |2

(
1 + cos

m
t L̄∆L+ eΦ

h̄

)
p(y) = 2λ |N |2

[
1 + cos

(
mL̄∆L

th̄
+
e

h̄
Φ

)]
(21)

The flux period can be found in two ways:

i) We find the minima/maxima of the cosine, and identify it as half a period:

mL̄∆L

th̄
+
e

h̄
Φ1 = 0⇒ Φ1 = −mL̄∆L

et
(22)

mL̄∆L

th̄
+
e

h̄
Φ2 = π ⇒ Φ2 =

πh̄

e
− mL̄∆L

et

The period is then given as

T = 2∆Φ = 2 (Φ2 − Φ1) =
2πh̄

e

ii) We can see the argument in the cosine as some phase mL̄∆L
th̄ (remembering this is constant in

our calculations). We then see e/h̄ as a (mathematical) frequency and get:

ω =
2π

T
=
e

h̄
⇒ T =

2πh̄

e

The resulting effect can be seen by looking at the maxima of the propagator in terms of L̄∆L.
From rearranging equation (22), we get

L̄∆L = −Φ
et

m

We see that if Φ = 0, then ∆L = 0 ⇒ y = 0 (look at the figure in the exercise sheet). If Φ
increses, we see that ∆L < 0 ⇒ L1 < L2, and if Φ increses in the opposite direction, we get
∆L > 0 ⇒ L2 > L1. This results in a shift in where the maximas are located, either above or
below y = 0


