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Solutions to problem set 10

10.1 Entanglement in the Jaynes-Cummings model

a) We have
|ψ(t)⟩ = c−n (t)|−, n+ 1⟩+ c+n (t)|+, n⟩

which gives the density matrix

ρ = |ψ(t)⟩⟨ψ(t)|
= |c−n (t)|2|−, n+ 1⟩⟨−, n+ 1|+ c−n (t)c

+
n (t)

∗|−, n+ 1⟩⟨+, n|
+ c−n (t)

∗c+n (t)|+, n⟩⟨−, n+ 1|+ |c+n (t)|2|+, n⟩⟨+, n|

Tracing over the photon mode we find

ρTLS =
∑
m

⟨m|ρ|m⟩ = |c−n (t)|2|−⟩⟨−|+ |c+n (t)|2|+⟩⟨+|.

This is diagonal, and we have the probabilities for the two states

p+ = |c+n (t)|2 = sin2
Ωnt

2
sin2 θn

p− = |c−n (t)|2 = 1− sin2
Ωnt

2
sin2 θn

The entanglement entropy is

S = −p+ ln p+ − p− ln p−

This is maximal when p+ and p− are as equal as possible. If sin2 θn > 1/2, which means that
θn > π/4, we can get p+ = p− = 1

2 with

Smax = −1

2
ln

1

2
− 1

2
ln

1

2
= ln 2.

This will happen when

sin2
Ωnt

2
sin2 θn =

1

2

which means

t =
2

Ωn
arcsin

[
1√

2 sin θn

]
=

2

Ωn
arcsin

[
Ωn√
2gn

]
If sin2 θn < 1/2 we have p+ < 1

2 and maximal when Ωnt
2 = π

2 + mπ, with m an integer.
p+max = sin2 θn and

Smax = − sin2 θn ln sin
2 θn − cos2 θn ln cos

2 θn.
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b) For the Rabi model (in the rotating frame) we have

|ψ(t)⟩ = c0(t)|0⟩+ c1(t)|1⟩

with
c0(t) = cos

Ωt

2
+ i sin

Ωt

2
cos θ, c1(t) = i sin

Ωt

2
sin θ.

This is a pure state and the Bloch vector has components

mR
x = 2Re(c∗0c1) = sin 2θ sin2

Ωt

2

mR
y = 2 Im(c∗0c1) = sin θ sinΩt

mR
z = |c0|2 − |c1|2 = 1− 2 sin2 θ sin2

Ωt

2
.

For the Jaynes-Cummings model we use

ρTLS =
1

2
(1+mJC · σ)

We know that
ρTLS = p−|−⟩⟨−|+ p+|+⟩⟨+| = 1

2
(1+ (p− − p+)σz)

from which we read out

mJC
x = mJC

y = 0

mJC
z = p− − p+ = 1− 2 sin2 θn sin

2 Ωnt

2
.

In the Rabi model, the state is always pure, and the Bloch vector presesses in a circle on the surface
of the Bloch sphere. In the Jaynes-Cummings model, the qubit is entangled with the photon mode,
and the reduced density matrix describes a mixed state. The Bloch vector oscillates along the axis
of the Bloch sphere with mJC

z = mR
z This is shown in the following figure with the Rabi model in

Blue and the Jaynes-Cummings model in red.
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c) In the limit n→∞ we have that gn = 2λ
√
n+ 1 grows. This means that

Ωn =
√
∆2 + g2n → gn

and sin θn = gn
Ωn
→ 1. So the amplitude and frequency of the oscillations grow, but the Bloch

vector is always on the axis of the Bloch sphereand entanglement is not reduced.

An idea for a better classical limit is to assume that the photon mode starts in a coherent state
instead of an energy eigenstate. We know that coherent states are the link to classical mechanics
for the harmonic oscillator, and we can hope that it will extend to the Jaynes-Cummings model as
well. In the figure the result is shown in green
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As we can see, it works to some extent, but it becomes a spiral instead of a circle. Here I used
an average photon number of 9 in the initial state. Maybe it should be bigger for the limit, but
numerics gets slow. More work is needed......

10.2 Uncle Charlie’s gift

a) If |ϕ⟩ is any of the states |Aa⟩, |Ab⟩, |Ba⟩, |Bb⟩ then the probabilities for the possible measurement
outcomes in the {|0⟩, |1⟩} basis are

|⟨00|ϕ⟩|2 = |⟨01|ϕ⟩|2 = |⟨10|ϕ⟩|2 = |⟨11|ϕ⟩|2 = 1

4

independent of which of the four states |ϕ⟩ is. Therefore it is not possible to distinguish between
these states in the {|0⟩, |1⟩} basis.

b) √
2|u⟩ = |0⟩+ |1⟩,

√
2|v⟩ = |0⟩ − |1⟩

In the new basis for Alice, the states take the form:

|Aa⟩ =
1√
2
(|u0⟩+ |v1⟩)

|Ab⟩ =
1√
2
(|v0⟩+ |u1⟩)

|Ba⟩ =
1√
2
(|u0⟩ − |v1⟩)

|Bb⟩ =
1√
2
(−|v0⟩+ |u1⟩)
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We see that if Alice measures u, then there are two states that corresponds to Bob measuring 0
|Aa⟩ and |Ba⟩. If Bob measures 1 and Alice u, we get |Ab⟩ or |Bb⟩. If Alice measures v and Bob
0, we get |Ab⟩ or |Bb⟩, and if Bob instead masured 1, we have the states |Aa⟩ or |Ba⟩. In this
setup, we can distinguish between which gift is given, but not who recieves it.

c) In this new configuration of bases, the states take the following form:

|Aa⟩ =
1√
2
(|0u⟩+ |1v⟩)

|Ab⟩ =
1√
2
(|0u⟩ − |1v⟩)

|Ba⟩ =
1√
2
(|0v⟩+ |1u⟩)

|Bb⟩ =
1√
2
(−|0v⟩+ |1u⟩)

In this current setup, we have the pairs |Aa⟩ or |Ab⟩ and |Ba⟩ or |Bb⟩. Now we can distinguish
between who recieves the gift, but not what gift.

If both decides on using the {u, v} basis, then the states take the following form:

|0⟩ =

√
2|u⟩ − |1⟩+

√
2|v⟩+ |1⟩

2
=

1√
2
(|u⟩+ |v⟩)

|1⟩ =

√
2|u⟩ − |0⟩ −

√
2|v⟩+ |0⟩

2
=

1√
2
(|u⟩ − |v⟩)

|00⟩ = |0⟩ ⊗ |0⟩ = 1

2
(|uu⟩+ |uv⟩+ |vu⟩+ |vv⟩)

|01⟩ = |0⟩ ⊗ |1⟩ = 1

2
(|uu⟩ − |uv⟩+ |vu⟩ − |vv⟩)

|10⟩ = |1⟩ ⊗ |0⟩ = 1

2
(|uu⟩+ |uv⟩ − |vu⟩ − |vv⟩)

|11⟩ = |1⟩ ⊗ |1⟩ = 1

2
(|uu⟩ − |uv⟩ − |vu⟩+ |vv⟩)

|Aa⟩ =
1

2
(|uu⟩+ |uv⟩+ |vu⟩ − |vu⟩)

|Ab⟩ =
1

2
(|uu⟩ − |uv⟩+ |vu⟩+ |vu⟩)

|Ba⟩ =
1

2
(|uu⟩+ |uv⟩ − |vu⟩+ |vv⟩)

|Bb⟩ =
1

2
(|uu⟩ − |uv⟩ − |vu⟩ − |vv⟩)

From this, we get the same argument as from problem a). A measurement in the {|u⟩, |v⟩} basis
yields no information as the information lies in the superposition of states.

d) We solve the given equations to get the original basis vectors in terms of the new. For Alice:
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|0⟩ = α∗|w⟩ − β|x⟩ |1⟩ = β∗|w⟩+ α|x⟩
For Bob:

|0⟩ = γ∗|y⟩ − δ|z⟩ |1⟩ = δ∗|y⟩+ γ|z⟩
Then we get

|Aa⟩ = 1

2
{[α∗(γ∗ + δ∗) + β∗(γ∗ − δ∗)] |wy⟩+ [−α∗(δ − γ)− β∗(γ + δ)] |wz⟩

+ [−β(γ∗ + δ∗) + α(γ∗ − δ∗)] |xy⟩+ [β(δ − γ)− α(γ + δ)] |xz⟩}

|Ab⟩ = 1

2
{[α∗(γ∗ + δ∗)− β∗(γ∗ − δ∗)] |wy⟩+ [−α∗(δ − γ) + β∗(γ + δ)] |wz⟩

+ [−β(γ∗ + δ∗)− α(γ∗ − δ∗)] |xy⟩+ [β(δ − γ) + α(γ + δ)] |xz⟩}

|Ba⟩ = 1

2
{[α∗(γ∗ − δ∗) + β∗(γ∗ + δ∗)] |wy⟩+ [−α∗(δ + γ) + β∗(γ − δ)] |wz⟩

+ [−β(γ∗ − δ∗) + α(γ∗ + δ∗)] |xy⟩+ [β(δ + γ) + α(γ − δ)] |xz⟩}

|Bb⟩ = 1

2
{[−α∗(γ∗ − δ∗) + β∗(γ∗ + δ∗)] |wy⟩+ [α∗(δ + γ) + β∗(γ − δ)] |wz⟩

+ [β(γ∗ − δ∗) + α(γ∗ + δ∗)] |xy⟩+ [−β(δ + γ) + α(γ − δ)] |xz⟩}

We observe that the coefficients in front of |wz⟩ and |xy⟩ are complex conjugates of each other
(or the negative of the complex conjugate), and therefore 0 at the same time. We want |Aa⟩ and
|Bb⟩ to give the same results, and only have projsections on two of the basis states. We want to
eliminate |wz⟩ and |xy⟩ from both of them, which requires

−α∗(δ − γ)− β∗(γ + δ) = 0

α∗(δ + γ) + β∗(γ − δ) = 0
(1)

Dividing the two equations we get
δ − γ
δ + γ

=
γ + δ

γ − δ
which gives δ = iγ. Since |δ|2 + |γ|2 = 1 this implies that |γ| = 1√

2
, and we can choose γ = 1√

2

to be real. Inserting this into (1) we get β = iα, and we have that α = γ = 1√
2

and β = δ = i√
2

is a solution. We then have

|Aa⟩ = 1√
2

(
eiπ/4|wy⟩ − eiπ/4|xz⟩

)
|Ab⟩ = 1√

2

(
e−iπ/4|wz⟩ − eiπ/4|xy⟩

)
|Ba⟩ = 1√

2

(
−eiπ/4|wz⟩+ e−iπ/4|xy⟩

)
|Bb⟩ = 1√

2

(
−eiπ/4|wy⟩+ eiπ/4|xz⟩

)
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which gives the measurement outcomes |wy⟩ or |xz⟩ for the states |Aa⟩ or |Bb⟩ and the outcomes
|wz⟩ or |xy⟩ for the states |Ab⟩ or |Ba⟩ as we wanted.

e) When performing a measurement, we destroy the entanglement due to the wavefunction “collaps-
ing” on determinate states. The result is a separable product state, which doesn’t contain any
entanglement.

10.3 Distributed information (Exam 2012)

a) If we rewrite our state as as:

|ψn⟩ =
1√
3
(|+⟩ ⊗ | − −⟩+ ηn|−⟩ ⊗ |+−⟩+ (η∗)n |−⟩ ⊗ | −+⟩)

We see that the density operator ρ̂n = |ψn⟩⟨ψn| will contain terms of the form |a⟩⟨b| ⊗ |cd⟩⟨ef |,
a, b, c, d, e, f ∈ {+,−}. To find the reduced density for A, we need to take the trace over the
second factor in the tensor product:

Tr (|cd⟩⟨ef |) = ⟨ef |cd⟩ = δecδfd

Thus, the only contributions will be:

ρ̂A =
1

3
(|+⟩⟨+| ⊗ Tr| − −⟩⟨− − |+ ηn (ηn)∗ |−⟩⟨−| ⊗ Tr|+−⟩⟨+− |+ (η∗)n ηn|−⟩⟨−| ⊗ Tr| −+⟩⟨−+ |)

=
1

3
(|+⟩⟨+|+ 2|−⟩⟨−|)

We see that the density operator doesn’t depend on n, and since all information was contained in
n, A has no information of the distributed spin. Let’s now look at what information A, B and C
together can get from measuring their qbit. When all measure in the basis I , the probability of
measuring different states are given by ⟨abc|ρ̂n|def⟩ = ⟨abc|ψn⟩⟨ψn|def⟩. The only terms that
survive are diagonal terms, i.e terms |def⟩ ⊂ |ψn⟩. From the calculation of the reduced density
matrix ρ̂A, we see that these terms will be independent of n, and thus, A,B,C won’t get any
information about n from these measurements.

b) Let’s write our state as

|ψn⟩ =
1√
3
(|+−⟩ ⊗ |−⟩+ ηn| −+⟩ ⊗ |−⟩+ (η∗)n | − −⟩ ⊗ |+⟩)

Then by taking the trace over C, the only contributing elements are the diagonal terms in C.

ρ̂AB
n = TrC ρ̂n

=
1

3
{|+−⟩⟨+− | ⊗ Tr (|−⟩⟨−|) + (ηn)∗ |+−⟩⟨−+ | ⊗ Tr |−⟩⟨−|

+ηn| −+⟩⟨+− | ⊗ Tr |−⟩⟨−|+ | −+⟩⟨−+ | ⊗ Tr |−⟩⟨−|+ | − −⟩⟨− − | ⊗ Tr |+⟩⟨+|}

=
1

3
{|+−⟩⟨+− |+ | −+⟩⟨−+ |+ | − −⟩⟨− − |+ ηn| −+⟩⟨+− |+ (ηn)∗ |+−⟩⟨−+ |}
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The probabilities for measuring different |ϕk⟩ given an n, are:

p (k|n) = ⟨ϕk|ρ̂AB
n |ϕk⟩

=
1

3
{⟨ϕk|+−⟩⟨+− |ϕk⟩+ ⟨ϕk| −+⟩⟨−+ |ϕk⟩+ ⟨ϕk| − −⟩⟨− − |ϕk⟩

+ηn⟨ϕk| −+⟩⟨+− |ϕk⟩+ (ηn)∗ ⟨ϕk|+−⟩⟨−+ |ϕk⟩}

The overlaps are given by:

⟨0|+⟩ = ⟨0|−⟩ = ⟨1|+⟩ = 1√
2
, ⟨1|−⟩ = − 1√

2

Then we’re ready to calculate the probabilities:

p (1|0) =
1

3
{⟨00|+−⟩⟨+− |00⟩+ ⟨00| −+⟩⟨−+ |00⟩+ ⟨00| − −⟩⟨− − |00⟩

+η0⟨00| −+⟩⟨+− |00⟩+
(
η0
)∗ ⟨00|+−⟩⟨−+ |00⟩

}
=

1

3
· 51

4
=

5

12

p (2|0) =
1

3
{⟨01|+−⟩⟨+− |01⟩+ ⟨01| −+⟩⟨−+ |01⟩+ ⟨01| − −⟩⟨− − |01⟩

+η0⟨01| −+⟩⟨+− |01⟩+
(
η0
)∗ ⟨01|+−⟩⟨−+ |01⟩

}
=

1

3

(
1

4
+

1

4
+

1

4
− 1

4
− 1

4

)
=

1

12

p (1|1) =
1

3
{⟨00|+−⟩⟨+− |00⟩+ ⟨00| −+⟩⟨−+ |00⟩+ ⟨00| − −⟩⟨− − |00⟩

+η⟨00| −+⟩⟨+− |00⟩+ η∗⟨00|+−⟩⟨−+ |00⟩}

=
1

3

(
3

4
+

1

4
(η + η∗)

)
=

2

12
=

1

6

p (2|1) =
1

3
{⟨01|+−⟩⟨+− |01⟩+ ⟨01| −+⟩⟨−+ |01⟩+ ⟨01| − −⟩⟨− − |01⟩

+η⟨01| −+⟩⟨+− |01⟩+ η∗⟨01|+−⟩⟨−+ |01⟩}

=
1

3

(
3

4
− 1

4
(η + η∗)

)
=

1

3

The change n = 1→ n = 2 doesn’t change the probabilities:

η2 = e4πi/3 = e2πi(1−
1
3) = e2πie−2πi/3 = η∗

(η∗)2 = e−4πi/3 = e−2πi(1− 1
3) = e−2πie2πi/3 = η

So η2 + (η∗)2 = η∗ + η = −1. Since the probabilities on the real part of the phase, this doesn’t
change anything.
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c) From normalization:∑
n

p̄(n|k) = 1⇒
∑
n

p(k|n)
p(k)

= 1⇒ p(k) =
∑
n

p(k|n)

Thus:

p̄(n|k) = p(k|n)∑
n p(k|n)

For the case k = 1, we get:

p̄ (0|1) =
p(1|0)

p(1|0) + p(1|1) + p(1|2)
=

5
12

5
12 + 21

6

=
5
12
9
12

=
5

9

p̄ (1|1) =
p(1|1)

9
12

=
1
6
9
12

=
2

9

p̄ (2|1) =
p(1|2)

9
12

=
p(1|1)

9
12

=
2

9

We see that the message n = 0 is most probable, while n = 1, 2 is equally probable.

10.4 Three-spin entanglement

a)

ρ = |ψ⟩⟨ψ| = 1

3
(| ↑↓↓⟩+ | ↓↑↓⟩+ | ↓↓↑⟩) (⟨↑↓↓ |+ ⟨↓↑↓ |+ ⟨↓↓↑ |)

ρA = TrBC ρ =
1

3
(| ↑⟩⟨↑ |+ 2| ↓⟩⟨↓ |)

ρBC = TrA ρ =
1

3
(| ↓↓⟩⟨↓↓ |+ | ↑↓⟩⟨↑↓ |+ | ↑↓⟩⟨↓↑ |+ | ↓↑⟩⟨↑↓ |+ | ↓↑⟩⟨↓↑ |)

The von Neumann entropy is

S = −Tr ρA ln ρA = −1

3
ln

1

3
− 2

3
ln

2

3

We could also use ρBC , but it is more complicated since it is not diagonal.

b) Measure ↑: |ψ⟩ → | ↑↓↓⟩. SBC = 0.

Measure ↓: |ψ⟩ → 1√
2
| ↓⟩(| ↑↓⟩+ | ↓↑⟩). SBC = ln 2.

c) The eigenstates of σx are

| →⟩ = 1√
2
(| ↑⟩+ | ↓⟩) σx| →⟩ = | →⟩

| ←⟩ = 1√
2
(| ↑⟩ − | ↓⟩) σx| ←⟩ = −| ←⟩
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If we solve these equations we get

| ↑⟩ = 1√
2
(| →⟩+ | ←⟩), | ↓⟩ = 1√

2
(| →⟩ − | ←⟩).

The state can then be expressed as

|ψ⟩ = 1√
6
(| →↓↓⟩+ | ←↓↓⟩+ | →↑↓⟩ − | ←↑↓⟩+ | →↓↑⟩ − | ←↓↑⟩)

Measure→: |ψ⟩ → 1√
3
| →⟩(| ↓↓⟩+ | ↑↓⟩+ | ↓↑⟩).

Measure←:|ψ⟩ → 1√
3
| ←⟩(| ↓↓⟩ − | ↑↓⟩ − | ↓↑⟩).

For BC we have (up to a global phase)

|ψBC⟩ =
1√
3
(| ↑↓⟩+ | ↓↑⟩ ± | ↓↓⟩).

The density matrix is

ρBC = |ψBC⟩⟨ψBC | =
1

3
(| ↑↓⟩+ | ↓↑⟩ ± | ↓↓⟩)(⟨↑↓ |+ ⟨↓↑ | ± ⟨↓↓ |)

ρB = TrC ρBC =
1

3
(2| ↓⟩⟨↓ |+ | ↑⟩⟨↑ | ± | ↑⟩⟨↓ | ± | ↓⟩⟨↑ |)

In matrix form

ρB =
1

3

(
1 ±1
±1 2

)
The eigenvalues are found from the characteristic equation∣∣∣∣13 − λ ±1

3
±1

3
2
3 − λ

∣∣∣∣ = (λ− 1

3
)(λ− 2

3
)− 1

9
= 0

which gives

λ± =
1± 1

3

√
5

2
.

The entanglement entropy is

S = −
1 + 1

3

√
5

2
ln

1 + 1
3

√
5

2
−

1− 1
3

√
5

2
ln

1− 1
3

√
5

2
.


