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Solutions to problem set 12

12.1 Photon emission

a) We know that €y, for a € {1, 2} are orthonormal vectors in the plane perpendicular to k, and we
can write k = key. Thus, a general (real) vector can be decomposed as follows:

a=(a-ek)ex + (a-ex)exa + (a-e;) e

Then:

d(aew)? = (a-aa)’+(a-e)’

a

= (a- 1)’ + (a- €x2)? + (a- ek)2 —(a- ek)2
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b) For the 1D harmonic oscillator, we have the standard ladder operators:
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a= mwi +ip), al = MWIL — 1P
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This gives the momentum operator:
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These ladder operators act on the |n) states.
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Where we note that this is in the z-direction as noted in the exercise text.
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¢) From the text:
p(07¢) = HZ ’ <TL - 171ka‘ﬁemis’n70> |2
a
- HZ ’ <7’L— 1711{“‘ - eZ\/TIA)'Ek’a’&T/ /‘77‘70) ‘2
- m 2V epw k'a

kl al

- ° hp 5 ~1 2
-l aves | ;k%'<"‘1’1ka'P'6kfafak/al|n,o>|

We note that the ladder operator in this case acts on the photon states, while p acts on the particle
states. Further:

(=1, Lkl - erewifyy1,0) = (0= 1]@ (il (- € @ 1) (12, ) In) 2 10)
= [((n = 11D ewar) @ (lial] [In) @ (alys10))]

= (n—1|p- Gk’a/’n><1ka|dL’a’|0>
~—
=SB

= <n — 1\f)|n) . Eklalékkléaal

Where I marked the quantum numbers in order to have the possibility for the photon state to differ
from the one in the emmision hamiltonian. So far, we have:
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Using the result from b) yields:
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Noting that both e, and €y, are real, we see that it is on the same form as the identity in exercise
a).
(0, 6) ke2h’n [ k>
= e;— e, —
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The probability is given in terms of angular coordinates, and k /£ has unit length, which allows us
to write:

k
= cos ¢ sin e, + sin ¢ sin e, + cos fe,
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Inserting this yields:
252
rke“h*n
0. ¢) = 1 —cos? @
p(9,¢) 4mVeg (1 - cos™0)

This expression may or may not be normalized, we check:

/ % do / " sin0d0 p(6, ) / " dé / " singde "N (1= cos0)
in ,0) = in —
0 0 p 0 0 4mV€0

Using the substitution:

dcost

sin 0df = — df = —dcosf

the boundries change to cos 0 = 1 to cos ™ = —1, and the minus interchanges the boundaries:

2w T 2w 1 242
/ dqﬁ/ sinfdfp(0,6) = / dd)/ dcos 5 in (1 — cos? 9)
0 0 0 —1

4mV€0

252 1
= ZWZ;VEZ /1 dcos@ (1 — cos? 0)
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= ——— |cosfH — =cos’ 0
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Then, the normalized probability becomes:

3 mVey re’hn

p0,9) = 2 wre2h2n 4mVeg (1 — cos® 0)
3
= 3. (1 — cos? 0)

This also seems resonable as the probabilities now only depent on angles, and not on things as the
charge, potential and what excitation the charge is in.

12.2 Electric dipole transition in hydrogen (Exam 2008)

See solutions to previous exam questions.

12.3 Spinflip radiation
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a) The probability distribution for the direction of the emitted photon, p(6, ¢) is according to the
problem given by

p(0,9) = N _|(k X €xa) - opal’

where NN is a normalization to be determined later. We have

OpA = <\L |0-’ T> = (17i70)

We can choose the polarization vectors so that

k x €kl = kekg and k x €k = —kek1

where k = |k|. This means that we get

k
D Ik xexa) opal =k lexa opal’ =K (lopal —lopa-
a a
Using
k
7= (sin 6 cos ¢ sin O sin ¢, cos 6)
we get
k .
\UBA|2:2 and UBA-E:sinﬁe“ﬁ.
The probability distribution for the direction of the emitted photon is then
p(0,6) = NE*(1 + cos? ).
To determine the normalization we calculate
do [ dfsinbp(f,¢) = Nk“2r [ dfsinf(1 + cos” ) = TNk =1
0

From which we get N = 3/167k?2. The answer is then

3

p(0,¢) = ﬂ(l + cos?h).

b) We have k = (1,0,0) and we can chosse the polarization vectors so that €x; = (0, cos «, sin ).
Then

p(a) = N|(k x €x1) - 0pal* = Nsin?a

To determine the normalization, we use the condition fow dap(a) = 1. Here we set the upper limit
of the integrtion to 7 and not 27 since « and « + 7 represents the same polarization state. We then

get
(@) = 2 sin®
o) = —sin“«
P ™
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c)
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This gives the lifetime
1 6mm?epc®
wpA ezhw%




