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Problem set 5

5.1 Density operators
A density operator of a two-level system can be represented by a 2× 2 density matrix in the form

ρ̂ =
1

2
(1+ r · σ) , |r| ≤ 1 (1)

where 1 is the 2× 2 identity matrix, r is a vector in three dimensions and σ is a vector operator with
the Pauli matrices as the Cartesian components.

a) Show that r = ⟨σ⟩.

b) If

ρ̂1 =
1

2
(1+ r1 · σ) and ρ̂2 =

1

2
(1+ r2 · σ)

are two density matrices, show that the statistical mixture

ρ̂ = p1ρ̂1 + p2ρ̂2 =
1

2
(1+ r · σ)

with r = p1r1 + p2r2.

c) Explain why this means that geometrically the set of all density matrices form of a sphere in three
dimensions, with the pure states |r| = 1 as the surface of the sphere (the Bloch sphere), and the
mixed states as the interior of the sphere.

d) The density operator can also be expressed in bra-ket formulation as

ρ̂ = ρ11 |+⟩⟨+| + ρ12 |+⟩⟨−| + ρ21 |−⟩⟨+| + ρ22 |−⟩⟨−| (2)

with |±⟩ defined by σz|±⟩ = ±|±⟩.
What are the coefficients ρij , i, j = 1, 2, expressed in terms of the Cartesian components x, y, z
of r?

e) Assume a spin-half system is prepared in a mixed state, with equal probability for spin up in the
(positive) directions of the three coordinate axes x, y and z . Find the corresponding density
matrix, expressed in the form (1). What is the von Neumann entropy of the state?

f) The above mixed state was realized as an ensemble of three different pure states (spin up along
each of the three coordinate axes). Find at least one different ensemble of two or more pure states
which gives the same density matrix.

5.2 Entropy of a thermal state
A thermal state is described by a temperature dependent density operator of the form

ρ̂ = N(β) e−βĤ (3)
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where β = 1/(kBT ) with T as the temperature, kB as the Boltzmann constant, and N(β) as a
normalization factor. This factor is given by

N(β)−1 = Tr(e−βĤ) =
∑
k

e−βEk (4)

with Ek as the energy eigenvalues.

a) Show that the temperature dependent von Neumann entropy of this state can be expressed in terms
of the normalization factor as

S(β) = β
d

dβ
logN(β)− logN(β) (5)

b) For a one-dimensional harmonic oscillator, with Hamiltonian

Ĥ = h̄ω
∞∑
n=0

(n+
1

2
)|n⟩⟨n| (6)

what is the expression for the temperature dependent entropy S(β)?

c) Plot S as a function of temperature, with x = 2kBT/(h̄ω) as the dimensionless temperature
coordinate on the horizontal axis, for example in the interval (0, 5). What are the asymptotic
expressions for S in the limits T → 0 (β → ∞) and T → ∞ (β → 0). Comment on these results
with reference to what we know about the values of the entropy for pure states and maximally
mixed states. (Assume log in the definition of S to mean the natural logarithm.)

5.3 Bloch-Siegert shift

We consider first an electron in a constant external magnetic field in the z-direction subject to a
rotating field in the xy-plane. The Hamiltonian has the form

H =
h̄

2
ω0σz +

h̄

2
A(cos(ωt)σx + sin(ωt)σy)

Here ω0 is the natural precession frequency of the electron spin in the external field,A is the amplitude
of the driving field, and ω its frequency.

a) Show that by changing to a reference frame rotating with the frequency ω of the driving field, the
total field is constant in the rotating frame. From the Hamiltonian in the rotating frame, conclude
that resonance (in the sense of largest amplitude Rabi oscillations of the spin state if the initial
state is the ground state) will take place when ω = ω0 irrespective of the driving amplitude A.

Now we replace the rotating field by one oscillating in the x-direction, which in many cases is
more realistic. The Hamiltonian now reads

H =
h̄

2
ω0σz +

h̄

2
A cos(ωt)σx. (7)
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b) Show that using the same transformation as above, the Hamiltonian in the rotating frame will get
an additional term which describes a field rotating at the frequency 2ω and give an explanation
for why this happens. Explain why we in some cases to a good approximation can neglect this
additional rotating component, and use the same Hamiltonian as we had for the rotating field also
when the field is oscillating, which is usually called the rotating wave approximation.

We will now study how we can get more accurate results than what is obtained in the rotating
wave approximation. To achieve this, we will start from the Hamiltonian (7), but instead of going to
a rotating frame, we will make the transformation

|ψ′⟩ = eiS(t)|ψ⟩, S(t) =
A

2ω
ξ sin(ωt)σx

where ξ is a parameter whose value we will choose later.

c) Show that the transformed Hamiltonian is

H ′ =
h̄

2
ω0

{
cos

[
A

ω
ξ sin(ωt)

]
σz + sin

[
A

ω
ξ sin(ωt)

]
σy

}
+
h̄

2
A(1− ξ) cos(ωt)σx.

Using the identities

cos

[
A

ω
ξ sin(ωt)

]
= J0

(
A

ω
ξ

)
+ 2

∞∑
k=1

J2k

(
A

ω
ξ

)
cos(2kωt)

sin

[
A

ω
ξ sin(ωt)

]
= 2

∞∑
k=0

J2k+1

(
A

ω
ξ

)
sin[(2k + 1)ωt]

where Jk(x) is the Bessel function of the first kind of order k, one can find that H ′ = H ′
0 +H ′

1 +H ′
2

with

H ′
0 =

h̄

2
ω0J0

(
A

ω
ξ

)
σz

H ′
1 = h̄ω0 sin(ωt)J1

(
A

ω
ξ

)
σy +

h̄

2
A(1− ξ) cos(ωt)σx

H ′
2 = h̄ω0

∞∑
k=1

{
J2k

(
A

ω
ξ

)
cos(2kωt)σz + J2k+1

(
A

ω
ξ

)
sin[(2k + 1)ωt]σy

}
.

You do not have to derive this. All the terms in H ′
2 have higher frequencies than the typical dynamical

frequencies of the state, and we will ignore H ′
2 and approximate H ′ ≈ H ′

0+H ′
1. We will also choose

ξ so that it satisfies the equation

J1

(
A

ω
ξ

)
ω0 =

1

2
A(1− ξ).

d) Explain what is special about this choice of ξ and why this simplifies the problem. Show that the
resonance condition for large amplitude Rabi oscillations now is

ω = ω0J0

(
A

ω
ξ

)
. (8)
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e) According to Eq. (8), the resonance frequency now depends on the amplitude, in contrast to the
case of a rotating field studied in question a). Use the series expansions for the Bessel functions

J0(x) = 1− x2

4
+
x4

64
+ · · ·

J1(x) =
x

2
− x3

16
+

x5

384
+ · · ·

to show that in the limit of a weak driving field, A → 0, we recover the resonance at ω = ω0 as
we had using the rotating wave approximation, and find the lowest order in A correction to the
resonance frequency for small A.


