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Problem set 9

9.1 Entanglement and measurements

In a textbook on quantum mechanics we find the following discussion of the EPR thought experi-
ment:

The problem posed by Einstein, Rosen, and Podolsky was made sharper by David Bohm
(1917–1992). A system of zero total angular momentum decays into two particles, each
with spin 1/2. Using the Clebsch-Gordan coefficients for combining spin 1/2 and spin 1/2
to make spin zero, the spin state vector is then

Ψ =
1√
2
[Ψ↑↓ −Ψ↓↑] , (12.1.2)

where the two arrows indicate the signs of the z-component of the two particles’ spins.
After a long time, the particles are far apart, and then measurements are made of the spin
components of particle 1. If the z-component of the spin of particle 1 is measured, it
must have a value h̄/2 or −h̄/2, and then the z-component of the spin of particle 2 must
correspondingly have a value −h̄/2 or +h̄/2, respectively. This not mysterious – the
particles were once in contact, so it is not surprising that the z-components of their spins
are strongly correlated. Following this measurement, suppose that the x-component of
the spin of particle 1 is measured. It will be found to have the value h̄/2 or −h̄/2, and
the z-component of particle 1’s spin will no longer have a definite value. Also, because
the system has zero total angular momentum, the spin of particle 2 will then have x-
component −h̄/2 or h̄/2, and its z-component will not have a definite value. There is
no problem in understanding the change in the spin state of particle 1; measuring one
spin component of this particle naturally affects other spin components. But if particle
1 and particle 2 are very far apart, then how can a measurement of the spin state of
particle 1 affect the spin state of particle 2? And if it does not, then are we to conclude
that the spin of particle 2 has definite values for both its z and its x-components, even
though these components do not commute? The only way to preserve consistency with
quantum mechanics is to suppose that while the first measurement puts the system in
a state where the first and second particles’ spin z-components are definite, the second
measurement puts the system in a state where it is only the x-component of the first and
second particles’ spin that have definite values. Though the particles are far apart, their
spins remain entangled.

If I understand this description correctly, the author makes a serious mistake at some point, giving
the reader an incorrect picture of entanglement. Can you find the mistake? Can you help rewrite the
text so that it becomes correct, while still describing the EPR-paradox?
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9.2 Hidden variables for a single spin-1
2

To better understand the range of theories covered by Bell’s assumptions of local hidden variables,
we want to show that it goes beyond what is covered in our best classical understanding of nature, and
how this enables one to reproduce predictions of quantum machanics even in cases where they differ
from classical physics.

In the lecture notes, pages 14-15 we read the following:

The experiment of Stern and Gerlach did not show such a continuous distribution. Instead
the position of the atoms were rather strongly restricted to two spots, which according
to the deflection formula would correspond to two possible measured values for the z-
component of the magnetic moment,

µz = ±µ. (1.38)

This result cannot easily be explained within classical theory. To demonstrate this more
directly, let us assume the y-component of the magnetic moment to be measured in a
similar way by rotating the magnets. Since there is no preferred direction orthogonal to
the beam, the possible results of measuring the component of the magnetic moment the
y-direction should be the same as for the z-direction,

µy = ±µ. (1.39)

Let us further consider the component of the magnetic moment of µ in some rotated
direction in the y, z-plane. For this component we have

µϕ = cosϕµy + sinϕµz (1.40)

with ϕ as the rotation angle relative to the y-axis. Again we may argue that due to rota-
tional symmetry, the possible measured values of µϕ should be the same as for µy and
µz .

µϕ = ±µ. (1.41)

This clearly leads to a contradiction. The condition of discrete values for the components
(1.38), (1.39) and (1.41) is not consistent with the decomposition (1.40) for a continuous
set of angles ϕ. Within the framework of classical theory the observation of the discrete-
ness of the components of the magnetic moment thus leads to a paradoxical situation.

So the predictions of quantum mechanics (and results of measurements) do not agree with the classical
picture of spin as the components of a vector in space. But Bell allows us to introduce any number of
additional hidden variables, which are neither controlled nor measured in the experiment. In this way
he is able to reproduce the “paradoxical situation” in a setting that is consistent with our understanding
of what a classical description of nature is, but not limited to present theories. In this problem you are
to check that an explicit example of a hidden varible theory (invented by Bell) does give the correct
results.
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a) Let us start with the quantum result. Consider a spin-12 particle in the state |ψn⟩ which is the
eigenstate of σn = n ·σ with eigenvalue +1. Show that the expectation value of the spin measured
along a different axis a is

⟨σa⟩ = ⟨ψn|σa|ψn⟩ = a · n = cos θ (1)

where θ is the angle between a and n. This is the quantum prediction that we have to reproduce
using hidden variables.

b) Let the hidden variable be a unit vector λ distributed uniformly over the hemisphere λ·n > 0. That
is, the distribution function P (λ) is constant on this hemisphere and zero on the other hemisphere.
Let the outcome of the measurement of spin along the axis a be A(a,λ) = sgn(a′ · λ) where a′

is some unit vector that we will find below and sgn(x) is the sign function which is +1 for x > 0
and −1 for x < 0. Show that the average of the spin is

⟨Aa⟩ =
∫
dλP (λ)A(a,λ) = 1− 2θ′

π

where θ′ is the angle between n and a′. (Hint: Draw the unit sphere and identify the areas where
P (λ) > 0 and where A(a,λ) is positive and negative).

c) What unit vector a′ do we have to choose so that the hidden variable theory will reproduce the
quantum result (1)?

9.3 Hidden variables for anticorrelation of a pair of spin-1
2

Bell’s theorem shows that it is in general impossible to find a hidden varable theory that will
reproduce the results of quantum mechanics. Here we will show how to construct such a theory for a
special case, where only a restricted set of measurements are allowed.

a) We have two entangled spin-12 in the state |ψ⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩). Show that if we measure both

spins along the same axis a, the results will always be perfectly anticorrelated:

〈
σAa σ

B
a

〉
= ⟨ψ|σAa σBa |ψ⟩ = −1. (2)

b) Let the hidden variable be a unit vector λ distributed uniformly over all directions. Let the out-
comes of the measurement of spins A and B along the axes a and b be

A(a,λ) = sgna · λ
B(b,λ) = − sgnb · λ

Show that the expectation value is

⟨AaBb⟩ =
∫
dλP (λ)A(a,λ)B(b,λ) = −1 +

2θ

π

where θ is the angle between a and b. As long as b = a this will reproduce the quantum result (2)
of perfect anticorrelation.
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9.4 Greenberger-Horne-Zeilinger (GHZ) version of Bell’s theorem

We will study an example where quantum mechanics can not be reproduced by hidden variables
even for results with no fluctuations (that is, without taking any averages). Consider three spin-12 ,
which are sent to separate observers, A, B and C. The entangled state is

|ψ⟩ = 1√
2
(| ↑↑↑⟩ − | ↓↓↓⟩)

a) We define the operators

ΣA = σAx σ
B
y σ

C
y ΣB = σAy σ

B
x σ

C
y ΣC = σAy σ

B
y σ

C
x

Show that the three operators Σi commute with each other. Which means they have a common
eigenstate.

b) Show that the state |ψ⟩ is an eigenstate of all Σi with eigenvalue +1:

ΣA|ψ⟩ = ΣB|ψ⟩ = ΣC |ψ⟩ = |ψ⟩ (3)

Explain that this means that if all spins are measured, with two measured along the y-direction and
one along the x-direction, the product of all three results will always be +1. This means we will
always get an even number of spins down along their chosen axis.

c) Consider now the operator Σ = σAx σ
B
x σ

C
x corresponding to measuring all spins along the x-

direction. Show that
Σ|ψ⟩ = −|ψ⟩ (4)

d) We now try to construct a hidden variable theory reproducing the above results. That means we
have to find functionsAX(λ) ≡ Ax, Ay, Bx ...= ±1 giving the results of the measurement of each
spin along each axis for a given value of the hidden variables. To agree with (3) these must satisfy
the relations

AxByCy = 1 AyBxCy = 1 AyByCx = 1 (5)

and to agree with (4)
AxBxCx = −1 (6)

Show that it is impossible to satisfy all these equations at the same time.

9.5 Tsirelson’s bound
For the CHSH inequality

S = A(B +B′) +A′(B −B′) ≤ 2

we found a quantum state |ψ⟩ and operators which gave S = 2
√
2. We are going to prove that this is

the maximal value for S in quantum mechanics.
Let A and A′ be operators on paricle A and B and B′ be operators on paricle B. Then the A

operators commute with the B operators. Also assume that the square of all the operators is 1 (like
for normal spin-12 operators).
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a) Show that

S2 = 4− [A,A′][B,B′]

b) We define the norm of a Hilbert space vector as ∥|ψ⟩∥ =
√
⟨ψ|ψ⟩ and the sup norm of a Hilbert

space operator M as

∥M∥ = sup
|ψ⟩

(
∥M |ψ⟩∥
∥|ψ⟩∥

)
Where sup|ψ⟩ means the supremum (largest possible value) for all different |ψ⟩. For a normalized
|ψ⟩ this is exactly what we need to find the maximal value of S. Prove the following properties of
the sup norm:

∥MN∥ ≤ ∥M∥ ∥N∥
∥M +N∥ ≤ ∥M∥+ ∥N∥

c) Use this to show that
∥∥S2

∥∥ ≤ 8 which gives ∥S∥ ≤ 2
√
2.


