FYS 4130 Statistical Mechanics

Homework 10 March 24, 2009

1) Relativistic Fermi Gas

Consider a gas of spin 1/2 fermions, relativistic so that $\epsilon = pc$ and the density of states including the degeneracy is:

$$g(\epsilon)D(\epsilon) = \frac{V}{\pi^2\hbar^3c^3}\epsilon^2$$

a) Calculate the fermi energy.

b) Calculate the ground state energy, Which is the total energy of the gas at temperature T = 0.

c) Calculate the pressure at T = 0.

Solution:

a)
$$\epsilon_f = (3\rho\pi^2)^{1/3}\hbar c$$

b)
$$E_0 = v \rho \frac{3}{4} (3\rho \pi^2)^{1/3} \hbar c$$

c)
$$P_0 = \frac{\hbar c}{4} (3\pi^2)^{1/3} \rho^{4/3}$$

2) Van der Waals gas

The critical point for the Van der Waals gas is the point in the P V isotherm at T_c , the critical temperature, where

$$\left(\frac{\partial P}{\partial V}\right)_T = 0.$$

Find expressions for the critical volume, pressure and temperature, V_c , P_c , T_c in terms of a and b.

Show that $P_c V_c = \frac{3}{8} N k T_c$ at the critical point.

Extra problem: Relativistic Fermi Gas

Consider a gas of spin 1/2 fermions, nonrelativistic so that $\epsilon = \frac{p^2}{2m}$.

- a) Calculate the fermi energy.
- b) Calculate the total energy of the gas at temperature T = 0.
- c) Calculate the pressure at T = 0.

Solution:

- a) $\epsilon_f = \frac{\hbar^2}{2m} (3\rho \pi^2)^{2/3}$
- b) $E_0 = \frac{3}{5}N\epsilon_f$
- c) $P_0 = \frac{\hbar^2}{15m\pi^2} (3\pi^2 \rho)^{5/3}$