FYS 4130 Statistical Mechanics

Homework 12 may 3, 2010

1) Mean Field for magnet

Consider a system of N atoms with spins $\sigma_{i}= \pm 1$. Each spin has an interaction with its nearest neighbors with coupling J each spin has z nearest neighbors.
$H=-B \sum_{i=1}^{N} \sigma_{i}-J \sum_{i=1}^{N} \sigma_{i} \sigma_{i+1}$
a) For the case $J=0$, find the average magnetization $m=\left\langle\sum \sigma_{i}\right\rangle$ and magnetic susceptibility $\chi=m / B$.
b) What are these values in the limit of weak field $B \beta \ll 1$?
c) Use the mean field approximation to find m and χ when $J>0$.
d) At what temperature T_{c} does χ diverge?
$T_{c}=z J / K$

2) Random Walk

Consider a random walk in one dimension with step length a and time interval τ. Each step has probability p to go forward and probability $q=1-p$ to go backward.
a) For a large number of steps, find an expression for $P_{N}(s)$, the probability of landing at position s after N number of steps. Where $s=R-L$ is the position along the x axis, R is the number of steps to the right and L is the number of steps to the left.
b) Find the gaussian probability distribution $P(x, t)$ which is the probability of finding the particle at a point between x and $x+d x$ at time t.F (Use stirling approximation)
c) Verify that this probability distribution satisfies the differential equation:
$\frac{\partial n}{\partial t}+v \frac{\partial n}{\partial x}-D \frac{\partial^{2} n}{\partial x^{2}}=0$
Find the constants v and D.

