FYS 4130 Statistical Mechanics

Homework 14 May 18, 2010

1) Diffusion (exam problem from 2009)

Diffusion of a local particle density $C(x, t)$ in one dimension is governed by the equation

$$
\frac{\partial C}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

Where D is the diffusion constant.
a) Show that

$$
C(x, t)=\sqrt{\frac{1}{4 \pi D t}} e^{-x^{2} / 4 D t}
$$

b) At time $t=0$ the concentration is given as $C_{0}(x)=K e^{-x^{2} / L^{2}}$ where L is a fixed length. Find the constant K from the requirement that there are in total N diffusing particles.
c) What is the current of particles for $x=L$ at this time?
d) Calculate the concentration of particles at a later time $t>0$.

