Answers to problem set 3
 FYS4130 at UiO, Spring 2012

Jørgen Trømborg
February 2012

3.1

Zeptojoules or yoctojoules

3.2

a) For any reasonable units, $S, T, E<10^{100}<\Omega(E)$.
b) $T \sim 1, E, S \sim N, \Omega(E) \sim e^{N}$

3.5

a) $A_{N}=\frac{1}{N!} \prod_{i}^{N}\left(A-(i-1) \pi(2 r)^{2}\right)$
b) $b=2 \pi r^{2}$
c) $P(A-N b)=N k_{B} T$

3.7

a)

$$
\begin{aligned}
& \Omega(E)=\frac{\left(\frac{3 N}{2}\right)!\left(\frac{5 N}{2}\right)!}{\left(\frac{8 N}{2}+1\right)!} E^{\frac{8 N}{2}+1} \\
& E_{1}^{\max }=\frac{3}{8} E
\end{aligned}
$$

b)

$$
\begin{aligned}
\rho\left(E_{1}\right) & \propto \exp \left(-\frac{\left(E_{1}^{\max }-E_{1}\right)^{2}}{2 \sigma^{2}}\right), \quad \sigma^{2} \propto \frac{E^{2}}{N} \\
\left\langle E_{1}\right\rangle & =E_{1}^{\max } \\
\frac{\sqrt{\left\langle\left(E_{1}-E_{1}^{\max }\right)^{2}\right\rangle}}{N} & \propto \frac{1}{\sqrt{N}} \quad \text { (Remember that energies are extensive.) }
\end{aligned}
$$

3.9

a)

$$
P(n)=\binom{T}{n} \frac{1}{K^{n}}\left(1-\frac{1}{K}\right)^{T-n}
$$

b)

$$
\begin{aligned}
\langle 1\rangle & =1 \\
\langle n\rangle & =a \\
\left\langle n^{2}\right\rangle & =a^{2}-a \\
\sigma^{2}=\left\langle(n-\langle n\rangle)^{2}\right\rangle & =a
\end{aligned}
$$

c)

$$
a=\frac{T}{K}
$$

d)

$$
\frac{1}{\sigma_{K}^{2}}=-\frac{1}{N_{0}} \frac{K}{K-1}
$$

e) When you find your answer you can check its normalisation directly.

3.11

a) The three relations are

$$
\begin{aligned}
& \left(\frac{\partial T}{\partial V}\right)_{S, N}=-\left(\frac{\partial P}{\partial S}\right)_{V, N} \\
& \left(\frac{\partial T}{\partial N}\right)_{S, V}=\left(\frac{\partial \mu}{\partial S}\right)_{V, N} \\
& \left(\frac{\partial \mu}{\partial V}\right)_{S, N}=-\left(\frac{\partial P}{\partial N}\right)_{S, V}
\end{aligned}
$$

b) With the correct definition of P you find

$$
\begin{aligned}
& T(S, V, N)=\frac{2}{3 N k_{B}} E(S, V, N), \\
& P(S, V, N)=\frac{2}{3 V} E(S, V, N) .
\end{aligned}
$$

