Answers to problem set 6
 FYS4130 at UiO, Spring 2012

Jørgen Trømborg
March 2012

6.4

a) T (on average; fluctuations are allowed, but large decreases are suppressed by having very small probabilities), FFFT
b) TFFT
6.6

6.9

a) $\mu=\left.\frac{\partial G}{\partial N}\right|_{T, P}$
b) -
c) $G=\mu N$. This is proportional to N since μ is independent of N, as we argued in b).

6.10

a) -
b) $\mathrm{d} P / \mathrm{d} T=\frac{L}{T\left(v_{1}-v_{2}\right)}$

6.13

a)

$$
\begin{aligned}
A(\infty) \equiv A(Q \gg 0) & =(L-b)^{2}-(B+b)^{2} \\
A(0) & =(L-b)^{2}-B(B+b) \\
A(0)-A(\infty) & =b(B+b) \\
A(Q) & =(L-b)^{2}-(B+b)^{2}+(b-Q)(B+b) \Theta(Q-b),
\end{aligned}
$$

where Θ is the Heaviside step function.
b)

$$
\begin{aligned}
\Omega(Q) & =\frac{A^{N}(Q)}{N!} \\
S(Q) & =k_{\mathrm{B}} \ln (\Omega(Q))=N k_{\mathrm{B}} \ln (A(Q))-\ln (N!)
\end{aligned}
$$

c) $F=-\frac{\partial \mathcal{F}}{\partial Q}=-N k_{\mathrm{B}} T \frac{B+b}{A(Q)}$, acting towards the wall (the free energy decreases with decreasing $Q)$.
d) Ideal gas pressure $P=\frac{N k_{\mathrm{B}} T}{A(Q)}$. The force on the far side is $F=-(B+b) P$, where the additional b comes from the fact that squares colliding with their centers within $b / 2$ of the pollen square's corners also exert pressure. There is no balancing force from the side nearest the wall because no gas molecules can enter this space. The effective length is $(B+b)$.

