Answers to problem set 7 FYS4130 at UiO, Spring 2012

Jørgen Trømborg

March 2012

7.1

	Fermi	Bose	Distinguishable	Maxwell-
				Boltzmann
a)	D	В	С	Е
b)	А	E	\mathbf{C}	\mathbf{C}
c)	\mathbf{C}	\mathbf{E}	F	А

7.2

a) –

b) Phonons and photons do not Bose condense at low temperature: their number is not conserved, and as $T \rightarrow 0$ the average occupancy of all the modes goes to zero. A laser has a macroscopic occupation of a single photon frequency; this condensation is not due to low temperature.

7.4

_

7.10

$$Z_{1} = 1 + Me^{-\beta\epsilon}$$

$$Z_{N} = Z_{1}^{N}, \text{ since the particles are not interacting}$$

$$E(T) = \langle E \rangle = -\frac{\partial}{\partial\beta} \ln Z_{N} = N \frac{M\epsilon}{M + e^{\beta\epsilon}}$$

$$\sigma_{E}^{2} = \langle E^{2} \rangle - \langle E \rangle^{2} = \frac{\partial^{2}}{\partial\beta^{2}} \ln Z_{N} = N \frac{M\epsilon^{2}e^{\beta\epsilon}}{(M + e^{\beta\epsilon})^{2}}$$

$$S(T) = \frac{E(T)}{T} + k_{B} \ln Z_{N} = \frac{N}{T} \frac{M\epsilon}{M + e^{\beta\epsilon}} + Nk_{B} \ln(1 + Me^{-\beta\epsilon})$$

$$C(T) = \frac{\partial E(T)}{\partial T} = \frac{1}{k_{B}T^{2}}\sigma_{E}^{2}, \text{ plotted below}$$

$$S(\infty) - S(0) = Nk_{B} \ln(M + 1)$$

