Answers to problem set 9 FYS4130 at UiO, Spring 2012

Jørgen Trømborg

April 2012

9.1

В

9.2

a) $S_A = S_B = 1, S_C = 2.$

9.4

a) We take $B = \frac{g}{4!}m_0^4$ and find $F = \mathcal{F}\Delta = m_0^3\sqrt{\frac{gK}{3}}$ with $\Delta = \frac{4}{m_0}\sqrt{\frac{3K}{g}}$.

b)
$$K \frac{\partial^2 m}{\partial x^2} = \frac{g}{6}m(m^2 - m_0^2)$$

c) –

d) $m = m_0 \tanh\left(\frac{m_0}{2}\sqrt{\frac{g}{3K}x}\right)$, which has a wall thickness equal to our estimate in a) down to an arbitrary numerical constant of order 1 (from the freedom of choice in defining the extent of the rapidly changing part of the tanh() function).

10.9

a)

$$\begin{split} \Omega_k &= \pm \sqrt{c^2 k^2 - \frac{d^4 k^4}{4}} + i \frac{d^2 k^2}{2} \\ \omega_k &= \operatorname{Re}(\Omega_k) \\ \Gamma_k &= -\operatorname{Im}(\Omega_k) \end{split}$$

 Q_k diverges as k^{-1} as $k \to 0$.

- b) The real part of ω_k vanishes at $\lambda = \frac{\pi d^2}{c}$.
- c) Only a) and b) were assigned.