Answers to problem set 9
 FYS4130 at UiO, Spring 2012

Jørgen Trømborg
April 2012

9.1

B
9.2
a) $S_{A}=S_{B}=1, S_{C}=2$.
b)

c)

9.4

a) We take $B=\frac{g}{4!} m_{0}^{4}$ and find $F=\mathcal{F} \Delta=m_{0}^{3} \sqrt{\frac{g K}{3}}$ with $\Delta=\frac{4}{m_{0}} \sqrt{\frac{3 K}{g}}$.
b) $K \frac{\partial^{2} m}{\partial x^{2}}=\frac{g}{6} m\left(m^{2}-m_{0}^{2}\right)$
c)
d) $m=m_{0} \tanh \left(\frac{m_{0}}{2} \sqrt{\frac{g}{3 K}} x\right)$, which has a wall thickness equal to our estimate in a) down to an arbitrary numerical constant of order 1 (from the freedom of choice in defining the extent of the rapidly changing part of the $\tanh ()$ function).
10.9
a)

$$
\begin{aligned}
\Omega_{k} & = \pm \sqrt{c^{2} k^{2}-\frac{d^{4} k^{4}}{4}}+i \frac{d^{2} k^{2}}{2} \\
\omega_{k} & =\operatorname{Re}\left(\Omega_{k}\right) \\
\Gamma_{k} & =-\operatorname{Im}\left(\Omega_{k}\right)
\end{aligned}
$$

Q_{k} diverges as k^{-1} as $k \rightarrow 0$.
b) The real part of ω_{k} vanishes at $\lambda=\frac{\pi d^{2}}{c}$.
c) Only a) and b) were assigned.

