Answers to problem set 13
 FYS4130 at UiO, Spring 2012

Jørgen Trømborg

May 2012

12.4

a) -
b) With $x^{*}= \pm \sqrt{\mu}$ and $\mu_{c}=0, \beta=1 / 2$.
c)

$$
\begin{aligned}
\lambda_{c} & =1 \\
m & \approx\left(\frac{3}{\lambda^{3}}\left(\lambda-\lambda_{c}\right)\right)^{1 / 2}
\end{aligned}
$$

12.5

a) $\langle s\rangle=\tanh (4 m J \beta)$, with $\langle\cdot\rangle$ indicating an average over states; the two states are $s= \pm 1$. Self-consistency requires $m=\langle s\rangle$. Using the result from 12.4c) (identify $\lambda=4 J \beta$) we find $T_{c}=\frac{4 J}{k_{\mathrm{B}}}$. The exponent $\beta=1 / 2$ (n ot to be confused with the usage $\beta=\frac{1}{k_{\mathrm{B}} T}$) is in poor agreement with 2D and 3D, but from 4D and up mean field theory works for this system.
b) The free energy $V(m)$ has a single or two degenerate minima, indicative of a continuous phase transition.

c) The free energy $V(m, H)$ has two minima of different energy, indicative of an abrupt phase transition. The metastable state becomes completely unstable when the local minimum of
highest energy disappears, approximately at $H=1$.

