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Phase coexistence in the van der Waals system
In this project we will study the van der Waals fluid. You will learn how to find
the Gibbs free energy for the system and how to use Gibbs free energy to find the
equilibrium state of the system, also in the case when we have both a liquid and a
gas phase in the system.

The van der Waals fluid is a mean field theory of a gas. It is a model system, just
as the ideal gas, although it includes more features of realistic gases. The van der
Waals gas includes two of the main effects of an attractive two-particle interaction
between particles in the gas: a repulsive interaction that keeps particles apart, and
an attractive long-range interaction that pulls particles together. These two effects
leads to two changes in the Helmholtz free energy of the gas, as compared to an ideal
gas: Instead of the volume V we introduce the effective volume, V −Nb, where the
volume b is the excluded volume per particle, and we introduce an average binding
energy, −a(N/V )2. Helmholtz free energy for the van der Waals gas is:

FwdW = −NkT
(

ln
(
nQ(V −Nb)

N

)
+ 1

)
− aN2

V
. (1)

(a) Show that the pressure, p(N,V, T ), of the van der Waals gas is

p =
NkT

V −Nb
− aN2

V 2
. (2)

This is the equation of state for the van der Waals gas.

We introduce the quantities

pc =
a

27b2
, Vc = 3Nb , kTc =

8a
27b

, (3)

so that we can introduce dimensionless quantities:

p̂ = p/pc , V̂ = V/Vc , T̂ = T/Tc , (4)

and similarly for the density

ρ̂ = 1/V̂ = ρ/ρc , ρc =
1
3b

. (5)

(b) Show that the pressure of the van der Waals gas can be written as

p̂ =
8T̂

3V̂ − 1
− 3
V̂ 2

. (6)

(c) Plot the pressure p̂ as a function of V̂ for V̂ in the range from 0.4 to 20 for
T̂ = 1.15, 1.0, and 0.85.

Solution:

% Plotting vdw p(rho)

clear all; clf;

Tvalues = [0.85 1.0 1.15];

for i = 1: length(Tvalues)

T = Tvalues(i);
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rho = linspace (0.2 ,2.0 ,1000);

V = 1.0./ rho;

p = 8.0* rho*T./(3-rho) - 3*rho .^2;

plot(V,p);

hold all

xlabel(’V/V_c’)

ylabel(’p/p_c’)

end
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Figure 0.1: Plot of p̂ as a function of V̂ for T̂ = 0.85, 1.0, 1.15.

Notice that the volume is not a unique function of the pressure for some range of
values. This means that we generally cannot find V̂ (p̂).

(d) Show that the pressure also can be expressed using the density instead of the
volume:

p̂ =
8ρ̂T̂
3− ρ̂

− 3ρ̂2 . (7)

(e) Plot the pressure p̂ as a function of ρ̂ for ρ̂ in the range fraom 0.0 to 2.0 for
T̂ = 1.15, 1.0, and 0.85.

Solution:

% Plotting vdw p(rho)

clear all; clf;

Tvalues = [0.85 1.0 1.15];

for i = 1: length(Tvalues)

T = Tvalues(i);

rho = linspace (0.2 ,2.0 ,1000);

V = 1.0./ rho;

p = 8.0* rho*T./(3-rho) - 3*rho .^2;

plot(rho ,p)

hold all

xlabel(’\rho/\rho_c ’)

ylabel(’p/p_c’)

end
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Figure 0.2: Plot of p̂ as a function of ρ̂ for T̂ = 0.85, 1.0, 1.15.

(f) Based on your plot, for what temperature does the density become non-unique
function of the pressure?

(g) Based on your plot, when does the isothermal compressibility

κ = − 1
V

(
∂V

∂P

)
T,N

=
1
ρ

(
∂ρ

∂P

)
T,N

, (8)

become negative?

Solution:
We simply need to look at the slope of p̂(ρ̂) – when this is negative the compressibility
is also negative.

A negative compressibility would mean that the system was unstable. This is an
unphysical situation. Let us now discuss the thermodynamic equilibrium and stability
of the system by addressing the Gibbs free energy of the system.

(h) Show that Gibbs free energy of the system in dimensional quantities is

G(T, V,N) =
NkTV

V −Nb
− 2aN2

V
−NkT (ln (nQ(V −Nb)/N) + 1) , (9)

Unfortunately, we cannot insert V (p) into this relation to get G(T, p,N), which are
the natural variables for G, because V is not a unique function of p. Let us therefore
instead study Gibbs free energy as a function of V as V is lowered. This gives a
unique pressure p for every value of V even though the reverse is not true.

(i) Argue that Gibbs free energy can be written as

G = −NkT ln(V −Nb)− aN2

V
+ pV +NkTc(T ) , (10)

where c(T ) is a function of temperature alone.



4 Fys2160 – 2013 – Oblig 7

It is now convenient to introduce a dimensionless Gibbs free energy by introducing
Gc = 3kTc/8.

(j) Show that Gibbs free energy per particle is

ĝ =
G/Gc

N
= −3ρ̂− 8

3
T̂ ln

(
3
ρ̂
− 1

)
+
p̂

ρ̂
, (11)

if you only include terms that depend on p̂ or ρ̂.

(k) For T̂ = 0.9 plot p̂ as a function of ρ̂ for ρ̂ from 0.2 to 2.0. Then plot V̂ as
a function of p̂ for the same data, using that V̂ = 1/ρ̂. Finally, plot ĝ as a
function of p̂ for the same data. Comment on the curve you get for Gibbs free
energy. You may want to plot all three plots in three subfigures and highlight
some points along the curves in order to be able to relate the values in the three
plots.

Solution:

% Plotting vdw p(rho)

clear all; clf;

Tvalues = 0.9;

for i = 1: length(Tvalues)

T = Tvalues(i);

rho = linspace (0.25 ,1.8 ,1000);

V = 1.0./ rho;

p = 8.0* rho*T./(3-rho) - 3*rho .^2;

g = -3*rho -(8/3)*T.*log ((3./ rho) -1)+p./rho;

subplot (3,1,1)

plot(rho ,p);

hold all

xlabel(’\rho/\rho_c ’)

ylabel(’p/p_c’)

subplot (3,1,2)

plot(V,p);

hold all

xlabel(’V/V_c’)

ylabel(’p/p_c’)

subplot (3,1,3)

plot(p,g);

hold all

xlabel(’p/p_c’)

ylabel(’g/g_c’)

end
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Figure 0.3: Plot of ĝ as a function of p̂ for T̂ = 0.9

(l) Argue that we can find the minimum of Gibbs free energy if we can determine
where the curve ĝ(p̂(ρ̂)) intersects itself.

(m) You can find self-intersections in matlab using the program selfintersect1.
When you call selfintersect for this particular dataset (T̂ = 0.9), you will get
a pair of indicies. Plot the corresponding points – the two points corresponding
to the intersection – in the plots for ρ̂(p̂) and for V̂ (p̂). Draw a straight line
between the two points. Comment on the results.

(n) What do you think really happens in the system between the two intersections?

(o) Make a systematic study, where you plot the line between the two insection
points in the p̂(V̂ ) plots for T̂ varying from 1.0 down to 0.85. Comment on (or
simply marvel at) the results.

Solution:

% Plotting vdw p(rho)

clear all; clf;

Tvalues = [0.8 0.85 0.9 0.95 0.99 1.0];

for i = 1: length(Tvalues)

T = Tvalues(i);

rho = linspace (0.2 ,2.0 ,1000);

V = 1.0./ rho;

p = 8.0* rho*T./(3-rho) - 3*rho .^2;

g = -3*rho -(8/3)*T.*log ((3./ rho) -1)+p./rho;

[x0 ,y0 ,segments ]= selfintersect(p,g);

subplot (1,3,1)

plot(rho ,p,’-b’,rho(segments),p(segments),’-or’)

hold all

xlabel(’\rho/\rho_c ’)

ylabel(’p/p_c’)

subplot (1,3,2)

1http://www.mathworks.com/matlabcentral/fileexchange/13351-fast-and-robust-self-intersections/

content/selfintersect.m

http://www.mathworks.com/matlabcentral/fileexchange/13351-fast-and-robust-self-intersections/content/selfintersect.m
http://www.mathworks.com/matlabcentral/fileexchange/13351-fast-and-robust-self-intersections/content/selfintersect.m
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plot(V,p,’-b’,V(segments),p(segments),’-or’);

hold all

xlabel(’V/V_c’)

ylabel(’p/p_c’)

subplot (1,3,3)

plot(p,g);%,’-b’,x0 ,y0 ,’bo’)

hold all

xlabel(’p/p_c’)

ylabel(’g/g_c’)

end

0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

ρ/ρ c

p
/
p
c

0 2 4 6
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

V /Vc

p
/
p
c

−2 0 2 4
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

p /p c

Figure 0.4: Plots of p̂(V̂ ), p̂(ρ̂), and ĝ(T̂ , ρ̂).

Non-compulsory part

The remaining part of the project adds understanding to the processes occurring, but
is not an essential part of the project.

We return to the expression for Gibbs free energy:

ĝ = −3ρ̂− 8
3
T̂ ln

(
3
ρ̂
− 1

)
+
p̂

ρ̂
. (12)

We can interpret this equation in the following way: For a given pair of p̂ and T̂ we
can find the equilibrium density ρ̂ as the value that gives a minimum value for ĝ.

(p) For T̂ = 0.9 generate a series of plots of ĝ as a function of ρ̂ for p̂ in the range
from 0.4 to 0.8. Discuss what happens during this change in pressure. (Good
question for class discussion).
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Solution:
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Figure 0.5: Plots of ĝ(ρ̂), for T̂ = 0.9 for a set of values of p̂ from 0.4 to 0.8 in 10 steps.

% Plotting vdw g(rho) for p and T given

clear all; clf;

pvalues = linspace (0.4 ,0.8 ,10);

T = 0.9;

for i = 1: length(pvalues)

p = pvalues(i);

rho = linspace (0.15 ,2.7 ,1000);

V = 1.0./ rho;

%p = 8.0* rho*T./(3-rho) - 3*rho .^2;

g = -3*rho -(8/3)*T.*log ((3./ rho) -1)+p./rho;

plot(rho ,g);

hold all

xlabel(’\rho/\rho_c ’)

ylabel(’g/g_c’)

end

hold off

End of Oblig 7


