Lecture 10

15.02.2018
Recap/Summary

Module II: Non-interacting particles, multiplicity function, partition function

Module II: Non-interacting particles, multiplicity function, partition function

on. 6. feb.	Classical free particles, Maxwell-Boltzmann distribution
fr. 8. feb.	Quantum ideal gases, Bose-Einstein distribution
on. 13. feb.	Fermi-Dirac distribution
fr. 15. feb.	Summary and questions

Compendium—Chapter 2
Pathria's book- Chapter 6 (6.1-6.4)

Free particles

- Mutual interactions between particles is negligible:
$>$ ideal spin systems (paramagnetism) -- distinguishable particles
> ideal classical gases
> ideal quantum gases
ζ indistinguishable particles

Maxwell-Boltzmann: free particles

- Equilibrium distribution of particles in an energy state

$$
n_{i}=\frac{N}{Z_{1}} e^{-\beta \epsilon_{i}}=e^{-\beta\left(\epsilon_{i}-\mu\right)}, Z_{1}=\sum_{i} e^{-\beta \epsilon_{i}}, N=Z_{1} e^{\beta \mu}
$$

- Probability of a specific microstate at fixed T and μ in the equilibrium

$$
\boldsymbol{P}(\boldsymbol{s})=\frac{1}{\Xi(\boldsymbol{T}, \boldsymbol{\mu})} \frac{1}{N_{s}!} \boldsymbol{e}^{-\boldsymbol{\beta}\left(E_{s}-\boldsymbol{\mu} N_{s}\right)}, \quad N_{S}=\sum_{i} n_{i}, \quad E_{S}=\sum_{i} \epsilon_{i} n_{i}
$$

- Grand-canonical partition function (sum over global particle numbers and sum over all the energy states for each individual particle)

$$
\begin{gathered}
\Xi(T, \mu)=\sum_{N_{s}} \frac{1}{N_{s}!} \sum_{E_{s}} e^{-\beta\left(E_{s}-\mu N_{s}\right)}=\sum_{N_{s}} \frac{1}{N_{s}!} \prod_{k=1}^{N_{s}} \sum_{\epsilon_{k}} e^{-\beta\left(\epsilon_{k}-\mu\right)} \\
\Xi(T, \mu)=\sum_{N_{s}} \frac{1}{N_{s}!}\left(\lambda \sum_{i} e^{-\beta \epsilon_{i}}\right)^{N_{s}}=e^{\lambda Z_{1}}, \quad \lambda=e^{\beta \mu}, \quad Z_{1}=\sum_{i} e^{-\beta \epsilon_{i}}
\end{gathered}
$$

Maxwell-Boltzmann: free particles

- Probability of having N_{s} particles in a macroscopic state at T and μ

$$
\begin{gathered}
P\left(N_{s}\right)=\frac{1}{\Xi(T, \mu)} \frac{1}{N_{s}!} \sum_{E_{s}} e^{-\beta\left(E_{s}-\mu N_{s}\right)}=\frac{1}{N_{s}!}\left(Z_{1} \lambda\right)^{N_{s}} e^{-Z_{1} \lambda} \\
\left.P\left(N_{s}, N\right\rangle\right)=\frac{1}{N_{s}!} N^{N_{s}} e^{-N}, \quad\left\langle N_{s}\right\rangle=N(T, \mu)=Z_{1}(T) \lambda(T, \mu)
\end{gathered}
$$

Total number of particles in a macrostate is a fluctuating (random)quantity drawn from a Poisson distribution with $\left\langle N_{s}\right\rangle=N$ as the average number

- $\left\langle\Delta N_{s}^{2}\right\rangle=\left\langle N_{s}^{2}\right\rangle-\left\langle N_{s}\right\rangle^{2}=\left\langle N_{s}\right\rangle$
- Relative number fluctuations $\frac{\left\langle\Delta N_{S}^{2}\right\rangle}{\left\langle N_{s}\right\rangle^{2}}=\frac{1}{N}=\frac{1}{Z_{1} \lambda} \ll 1$

Maxwell-Boltzmann: free particles

- Probability for an occupation number n in ϵ_{i} energy state

$$
\begin{aligned}
& P_{i}(n)=\frac{\frac{1}{n!}\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}}{\left(\sum_{n} \frac{1}{n!}\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}\right)}=\frac{1}{n!} \frac{\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}}{\exp \left(\lambda e^{-\beta \epsilon_{i}}\right)} \\
& P_{i}\left(n, n_{i}\right)=\frac{1}{n!} n_{i}^{n} e^{-n_{i}}, \quad n_{i}=\langle n\rangle_{i}=\lambda e^{-\beta \epsilon_{i}}
\end{aligned}
$$

Occupation number of an energy state is also a random number following Poisson distribution with $n_{i}=\lambda e^{-\beta \epsilon_{i}}$

- $\left\langle\Delta n^{2}\right\rangle_{i}=\left\langle n^{2}\right\rangle_{i}-\langle n\rangle_{i}^{2}=n_{i}$
- Relative number fluctuations $\frac{\left\langle\Delta n^{2}\right\rangle_{i}}{n_{i}^{2}}=\frac{1}{n_{i}}=\frac{Z_{1} e^{\beta \epsilon_{i}}}{N} \ll 1$

System of free spins

- Maxwell-Boltzmann distribution (MBD): probability that a spin occupies a microstate//fraction of spins in a (single-particle) microstate

$$
\frac{n_{s}}{N}=\frac{1}{Z_{1}(T)} e^{-\beta \epsilon_{s}}, \quad \epsilon_{s}=-s \mu B, \quad s= \pm 1
$$

- 1-particle partition function $Z_{1}(T)=\sum_{s= \pm 1} e^{-\beta \epsilon_{s}}=2 \cosh (\beta \mu B)$
- N -partition function $Z_{N}(T)=Z_{1}^{N}=2^{N} \cosh ^{N}(\beta \mu B)$
- Average spin energy $\langle\epsilon\rangle=\frac{1}{Z_{1}} \sum_{s} \epsilon_{s} e^{-\beta \epsilon_{s}}=-\mu B \tanh (\beta \mu B)$
- Average total energy $\mathrm{U}=\mathrm{N}\langle\epsilon\rangle=-N \mu B \tanh (\beta \mu B)$
- Grand-canonical partition $\Xi(T, \mu)=\sum_{N_{s}}\left(\lambda Z_{1}\right)^{N_{s}}=\frac{1}{1-\lambda Z_{1}}$

Ideal gas

- Energy levels for each particle

$$
\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

- Quantum numbers

$$
\boldsymbol{n}=\left(n_{x}, n_{y}, n_{z}\right), n_{i}=0, \pm 1, \pm 2, \cdots
$$

$$
\begin{gathered}
\mathrm{Z}_{1}=\sum_{n_{x}} \sum_{n_{y}} \sum_{n_{z}} e^{-\beta \frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)}=\left(\int_{-\infty}^{\infty} d n e^{-\beta \frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2} n^{2}}\right)^{3}=\frac{V}{\Lambda(\mathrm{~T})^{3}} \\
\text { thermal wavelength } \Lambda(\mathrm{T})=\sqrt{\frac{2 \pi \hbar^{2}}{m k T}}
\end{gathered}
$$

$\mathrm{Z}_{1}=\int_{0}^{\infty} d \epsilon \mathrm{D}(\epsilon) e^{-\beta \epsilon}$

$$
D(\epsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{1 / 2}=4 \pi n^{2}\left|\frac{d n}{d \epsilon}\right|
$$

$D(\epsilon) d \epsilon$ number of microstates with energy between ϵ and $\epsilon+d \epsilon$ (for 1 particle)

Thermodynamics of the ideal gas

$$
\mathrm{Z}_{\mathrm{N}}=\frac{Z_{1}^{N}}{N!}=\frac{V^{N}}{N!\Lambda^{3 N}}
$$

- Helmholtz free energy

$$
F=-k T \ln Z_{N}=-N k T\left(\ln \left(\frac{Z_{1}}{N}\right)+1\right)
$$

- Pressure $P=-\left(\frac{\partial F}{\partial V}\right)_{T, N}=\frac{N k T}{V}$
- Chemical potential $\mu=-\left(\frac{\partial F}{\partial N}\right)_{T, V}=-k T \ln \frac{Z_{1}}{N}=-k T \ln \frac{V}{N \Lambda^{3}}=k T \ln \frac{P \Lambda^{3}}{k T}$
- Internal energy $U=-\frac{\partial}{\partial \beta} \log Z_{N}=\frac{3}{2} N k T$
- Grand-canonical partition

$$
\Xi(T, \mu)=\sum_{N_{s}} \frac{1}{N_{s}!}\left(\lambda Z_{1}\right)^{N_{s}}=e^{\lambda Z_{1}}=e^{-\beta \Omega} \rightarrow \Omega=- \text { NkT }, \quad \mathbf{N}=\lambda Z_{1}
$$

Bose-Einstein statistics:

- Equilibrium (average) occupation number for an energy state

$$
\left\langle n_{i}\right\rangle=\frac{1}{e^{\beta\left(\epsilon_{i}-\mu\right)}-1}=\frac{1}{e^{\beta \epsilon_{i}} \lambda^{-1}-1}
$$

- Probability of a specific microstate at fixed T and μ in the equilibrium

$$
\boldsymbol{P}(\boldsymbol{s})=\frac{1}{\Xi(\boldsymbol{T}, \boldsymbol{\mu})} \boldsymbol{e}^{-\boldsymbol{\beta}\left(E_{s}-\boldsymbol{\mu} N_{s}\right)}, \quad N_{s}=\sum_{i} n_{i}, \quad E_{s}=\sum_{i} \epsilon_{i} n_{i}
$$

- Grand-canonical partition function

$$
\Xi^{(B E)}(T, \mu)=\prod_{i}\left(\sum_{n_{i}=0}^{\infty}\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n_{i}}\right)=\prod_{i}\left(\frac{1}{1-\lambda e^{-\beta \epsilon_{i}}}\right)
$$

Bose-Einstein statistics:

- Probability for having n bosons in a given energy state

$$
P_{i}^{(B E)}(n)=\left(1-\lambda e^{-\beta \epsilon_{i}}\right)\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}=\frac{1}{\left\langle n_{i}\right\rangle+1}\left(\frac{\left\langle n_{i}\right\rangle}{\left\langle n_{i}\right\rangle+1}\right)^{n}
$$

geometric distribution: probability that a particle occupies an energy state is independent of the number of particles already in that states --- tendency of «bunching» together

Relative number fluctuations $\frac{\left\langle\Delta n^{2}\right\rangle_{i}}{n_{i}^{2}}=\frac{1}{n_{i}}+1$

Increased number fluctuations relative to be MB statistics

$$
\begin{aligned}
& \odot \\
& \text { © }{ }^{\circ} \text {) } \odot \\
& \text { (-) }- \\
& \left\langle n^{2}\right\rangle_{i}=\sum_{n=0}^{\infty} n^{2} \frac{1}{\left\langle n_{i}\right\rangle+1}\left(\frac{\left\langle n_{i}\right\rangle}{\left\langle n_{i}\right\rangle+1}\right)^{n} \\
& \left\langle n^{2}\right\rangle_{i}=\frac{1}{\left\langle n_{i}\right\rangle+1}\left(x \frac{d}{d x}\right)^{2} \sum_{n=0}^{\infty} x^{n} \\
& \left\langle n^{2}\right\rangle_{i}=\frac{1}{\left\langle n_{i}\right\rangle+1}\left(x \frac{d}{d x}\right)^{2}\left(\frac{1}{1-x}\right), \quad x=\frac{\left\langle n_{i}\right\rangle}{\left\langle n_{i}\right\rangle+1} \\
& \left\langle n^{2}\right\rangle_{i}=\left\langle n_{i}\right\rangle+2\left\langle n_{i}\right\rangle^{2}
\end{aligned}
$$

Fermi-Dirac statistics

Equilibrium occupation number for an energy state

$$
n_{i}=\frac{1}{e^{\beta\left(\epsilon_{i}-\mu\right)}+1}=\frac{1}{e^{\beta \epsilon_{i} \lambda^{-1}}+1}
$$

- Probability of a specific microstate at fixed T and μ in the equilibrium

$$
\boldsymbol{P}(\boldsymbol{s})=\frac{\mathbf{1}}{\Xi(\boldsymbol{T}, \boldsymbol{\mu})} \boldsymbol{e}^{-\boldsymbol{\beta}\left(E_{\boldsymbol{s}}-\boldsymbol{\mu} N_{s}\right)}, \quad N_{s}=\sum_{i} n_{i}, \quad E_{S}=\sum_{i} \epsilon_{i} n_{i}
$$

- Grand-canonical partition function

$$
\Xi(T, \mu)=\prod_{i}\left(\sum_{n_{i}} e^{-\beta n_{i}\left(\epsilon_{1}-\mu\right)}\right)=\prod_{i}\left(1+e^{-\beta\left(\epsilon_{i}-\mu\right)}\right)
$$

Free fermions: Fermi-Dirac statistics

$$
P_{i}^{(F D)}(n)=\frac{\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}}{1+\lambda e^{-\beta \epsilon_{i}}}= \begin{cases}1-n_{i}, & n=0 \\ n_{i}, & n=1\end{cases}
$$

- $\left\langle n^{2}\right\rangle_{i}=\sum_{i=0}^{1} n^{2} P_{i}(n)=P_{i}(1)=n_{i}$
- Relative mean square fluctuations: as the occupation probability increases, fluctuations are suppressed

$$
\frac{\left\langle\Delta n^{2}\right\rangle_{i}}{n_{i}^{2}}=\frac{1}{n_{i}}-1 \rightarrow 0, \text { as } n_{i} \rightarrow 1
$$

- Negative statistical correlation- statistical repelling force

Classical limit: $\epsilon_{i} \ll k T, \mu(T) \ll 0$
 (high-T limit)

- Fermi Dirac/Bose-Einstein distribution:

$$
n_{i}=\frac{1}{e^{\beta\left(\epsilon_{i}-\mu\right)} \pm 1}=e^{\beta \mu} \frac{e^{-\beta \epsilon_{i}}}{1 \pm e^{-\beta \epsilon_{i}} e^{\beta \mu}} \approx e^{\beta \mu} e^{-\beta \epsilon_{i}}
$$

- Maxwell Boltzmann distribution:

$$
n_{i}^{M B}=\frac{N}{Z_{1}} e^{-\beta \epsilon_{i}}=e^{\beta \mu} e^{-\beta \epsilon_{i}}
$$

- Classical ideal gas limit: $\mu=-k T \ln \frac{V}{N \Lambda^{3}(T)} \ll 0 \rightarrow$

$$
T \gg T^{*}=\left(\frac{h^{2}}{2 \pi m k}\right) \rho^{2}, \quad \rho=\frac{N}{V}
$$

Fermi Dirac distribution at $\mathrm{T}=0 \mathrm{~K}$

$n(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)+1}} \rightarrow_{T \rightarrow 0}\left\{\begin{array}{l}1, \epsilon<\mu \\ 0, \epsilon>\mu\end{array}\right.$

$\epsilon_{F} \equiv \mu$ Fermi energy level below which all states are occupied

Fermi-Dirac statistics at $\mathrm{T}=0 \mathrm{~K}$ in 3D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=\left(4 \pi n^{2}\right) d n \rightarrow$

$$
D(\epsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{1 / 2}, \quad V=L^{3}
$$

Fermi-Dirac statistics at $\mathrm{T}=0 \mathrm{~K}$ in 3D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=\left(4 \pi n^{2}\right) d n \rightarrow D(\epsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{1 / 2}, \quad V=L^{3}$

Number of particles

$$
\begin{gathered}
N=\sum_{i}\langle n\rangle\left(\epsilon_{i}\right)=2 \int_{0}^{\infty} d \epsilon D(\epsilon) H\left(\epsilon-\epsilon_{F}\right)=2 \int_{0}^{\epsilon_{F}} d \epsilon D(\epsilon) \\
N=2 \frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \int_{0}^{\epsilon_{F}} d \epsilon \epsilon^{1 / 2}=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \frac{2}{3} \epsilon_{F}^{3 / 2}
\end{gathered}
$$

- Fermi energy $\boldsymbol{\epsilon}_{\boldsymbol{F}}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \rho\right)^{\frac{2}{3}}$
- Fermi temperature $\quad \boldsymbol{T}_{\boldsymbol{F}}=\frac{\epsilon_{F}}{k}=\frac{\hbar^{2}}{2 m \boldsymbol{k}}\left(3 \pi^{2} \boldsymbol{\rho}\right)^{\frac{2}{3}}<\mathbf{T}^{*}=\left(\frac{h^{2}}{2 \pi m k}\right) \boldsymbol{\rho}^{2}$
- Electron gas in metals $\boldsymbol{T}_{\boldsymbol{F}} \sim \mathbf{1 0}^{\mathbf{4}}-\mathbf{1 0}^{\mathbf{5}} \boldsymbol{K} \gg \mathbf{3 \times 1 0 ^ { 2 }} \boldsymbol{K}$ (degenerate gas--- behaves as if it was 0 K for a wide range of $T \ll T_{-} F$)

Fermi-Dirac statistics at T=0 K in 2D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$

Density of states $D(\epsilon) d \epsilon=(2 \pi n) d n \rightarrow D(\epsilon)=\frac{L^{2}}{4 \pi} \frac{2 m}{\hbar^{2}}$

Fermi-Dirac statistics at T=0 K in 2D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=(2 \pi n) d n \rightarrow D(\epsilon)=\frac{L^{2}}{4 \pi} \frac{2 m}{\hbar^{2}}$
Number of particles

$$
\begin{gathered}
N=\sum_{i}\langle n\rangle\left(\epsilon_{i}\right)=2 \int_{0}^{\infty} d \epsilon D(\epsilon) H\left(\epsilon-\epsilon_{F}\right)=2 \int_{0}^{\epsilon_{F}} d \epsilon D(\epsilon) \\
N=\frac{L^{2}}{\pi} \frac{m}{\hbar^{2}} \int_{0}^{\epsilon_{F}} d \epsilon=\frac{L^{2}}{\pi} \frac{m}{\hbar^{2}} \epsilon_{F}
\end{gathered}
$$

- Fermi energy $\quad \boldsymbol{\epsilon}_{\boldsymbol{F}}=\frac{\hbar^{2}}{\boldsymbol{m}} \boldsymbol{\pi} \boldsymbol{\rho}$
- Fermi temperature $\quad \boldsymbol{T}_{\boldsymbol{F}}=\frac{\boldsymbol{\epsilon}_{\boldsymbol{F}}}{\boldsymbol{k}}=\frac{\hbar^{2}}{\boldsymbol{m}} \boldsymbol{\pi} \boldsymbol{\rho}$

Fermi-Dirac statistics at $\mathrm{T}=0 \mathrm{~K}$ in 1D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=d n \rightarrow D(\epsilon)=\frac{L}{4 \pi}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{1}{2}} \epsilon^{-1 / 2}$

Fermi-Dirac statistics at T=0 K in 1D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=d n \rightarrow D(\epsilon)=\frac{L}{4 \pi}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{1}{2}} \epsilon^{-1 / 2}$

$$
N=2 \int_{0}^{\epsilon_{F}} d \epsilon D(\epsilon)=\frac{L}{\pi}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{1}{2}} \epsilon_{F}^{\frac{1}{2}} \rightarrow \epsilon_{F}=\frac{\hbar^{2}}{2 m}(\pi \rho)^{2}
$$

Number of particles $N=\sum_{i}\langle n\rangle\left(\epsilon_{i}\right)=2 N_{\text {max }}$

- Fermi energy

$$
\begin{aligned}
& \epsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2} N_{\max }^{2} \rightarrow \\
& \epsilon_{F}=\frac{\hbar^{2}}{2 m}(\pi \rho)^{2}, \quad \rho=\frac{N}{L}
\end{aligned}
$$

Fermi temperature $\mathrm{T}_{\mathrm{F}}=\frac{\hbar^{2}}{2 m k}(\pi \rho)^{2}$

Fermi Dirac distribution at $\mathrm{T}>0 \mathrm{~K}$

$$
n(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}+1}, \quad \mu\left(\epsilon_{F}, T\right)
$$

Energy states above the Fermi level are occupied by excited fermions

