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Virial theorem



Virial term

Let's consider this averaged quantity - virial term
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Use Hamiltonian particle dynamics
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The ensemble averaged quantity on the lhs vanishes for ergotic systems
(ensemble averages = time averages)
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Kinetic energy

Use the equilibrium Maxwell-Boltzmann distribution for the averages in canonical

ensemble
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Integration by parts for each 3N terms in the sum (identical integral for each term in the sum)
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Equipartition of energy (K) = ng, e.g.f = 3N Each quandratic degreees of
freedom that is freely accessible gets the same quota of energy kT /2



Virial theorem

Now use the other definition
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3NKT = (0%) + (9%t),  F = Ft 4 Fe*t = YUy — PdS
Fint = _yy v is the internal force acting on a particle due to its interaction with the other particles in the systems; force

generated by the pairwise interaction potential

Fext = —pdS is the force acting on a surface element dS of the particle due to the pressure maintained by the equilibrium

with the reservoir



Virial theorem (9€*t)
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Virial theorem (Hi"t)
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Virial theorem (Hi"t)

The virial related to internal forces is
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Relative coordinates 7 = # —#,,Z = (#,+7,)/2 and using isotropy d# — 4nridr
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General equation of state

Virial theorem
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Low-density limit g(r) =~ e P
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Virial expansion
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Perturbative expansion: g(r) = e PYM[1 + Y% . p™y, (1)]
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Van der Waals equation of state
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Van der Waals in the low density limit
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Boyle's temperature Tg = - is defined as the finite temperature at
which the Van der Waals gas behaves as the ideal ideal gas

Pg = pkTjp

Ty is the temperature at which attraction and repulsive forces
balance each other out, and the gas behaves effectively as an ideal
gas



