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Configuration probability distribution
Probability	for	a	microstate with a	spatial	configuration of particles at positions 4⃗5, 4⃗7,⋯ , 4⃗9

:9 4⃗5, 4⃗7,⋯ , 4⃗9 =
1
=9

>?@A B⃗C,B⃗D,⋯,B⃗E

For homogeneous and isotropic systems :9 4⃗, 4⃗7,⋯ , 4⃗9 =
5
FE
∏HIJ >

?@K BLM

• PROBLEM!
:9 4⃗5, 4⃗7, ⋯ , 4⃗9 is a multidimensional function, and generally difficult to compute

• SOLUTION 2:
• Mean field approximation: Each particle interacts with a	constant effective potential field «mean
interaction potential»	induced by	all	the other particles

• Thermodyamic properties, like pressure, internal energy, can be expressed in terms of these effective
potential
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Mean-field approximation: interaction potential
The	interaction potential on a	particle varies from	particle to	particle

In	the mean field approximation,	we assume that all	particles experience the same	effective potential
field

8
9:;

< =;9 → < = <(A)

C =⃗E, =⃗F, ⋯ , =⃗H =8
;

8
;:9

<(=;9) =8
;IE

H

< = J<

Configurational partition function

MH = ∫ O=⃗E ⋯O=⃗HPQRS T⃗U,T⃗V,⋯,T⃗W = ∫ O=⃗E ⋯O=⃗H eQRHX

MH = MEH

ME = ∫ O=⃗EPQRX = Y − J[ PQRX, [ is	the particle exclusion volume
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Mean-field approximation and self-consistent equation

Canonical	partition function

./ =
1

2!

4/
Λ6/

, 4/ = 8 − 2: /;</=>

Helmholtz free energy

F/ = −2GH ln
8 − 2:

2Λ6 H
−IJ(L) + 1

• How	do	we determine the mean interaction potential,	u?	J is	determined by	the self-
consistent equation

J =
V/
2

=
L

2
∫ Y[⃗ J [ \([)

Lenard-Jones	type	of interaction (strong repulsion on short distance,	weak long range	attraction):

J = 2aLb
c

d

Y[ [eJ [ ;<=>(f) = L2ab
fg

d

Y[ [eJ [

J L = −Lh = −
2h

8
, h > 0
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Equation of state: Mean-field approximation
!" = −%&' ln * − %+

%Λ- ' + %/
&'* + 1

!" = −%&' ln *
%Λ- ' + 1 − %&' ln 1 − %+* − %

1/
*

2 = −3!3* =
&'
4"

34"
3*

2 = &' %
* − %+ −

/
&'

%1

*1
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Ideal Entropic correction from 
exclusion volume

Energy correction from 
attraction forces



Van der Waals: Mean-field approximation

!
"# =

%
& − %( −

)
"#

%*

&*

6

# > #,

# < #,
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P(V) curve becomes non-monotonic
./
.0 > 0 is an unstable branch because it 
corresponds to 

2*34
2&* < 0

Helmholtz free energy becomes
concave (unstable region) 



Van der Waals fluids at the critical point !"
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Critical point defined as the inflection point of
the isotherm in the # − % diagram: 

&#
&% = 0, &*#

&%* = 0

Applied	to	the van	der	Waals		equation of state

#" =
>

27A* , !" =
8>
27AC , %" = 3A
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Rescaled !, #, $ in units of the critical !%, #%, $%

!& =
!
!%
, $& =

$
$%
, #& =

#
#%

() ≈ −$& ln #& −
1
3 + 32 ln($&) +

9
8

1
#&$&

+ 1

!& =
8 $&

3#& − 1
− 3
#&6
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Liquid	phase and	the gas	phase are at	equilibrium

and	the state of their mixture is	determined by		

Common tangent	construction

9: ;< =
>?
>
9:@ ;? +

>B
>
9:C(;B)

;< =
>?
>
;? +

>B
>
;B, > = >? + >B

Phase separation

Van der Waals: phase transition below GH

;<

9(;<)
Unstable



Fluid mixture below !"
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Maxwell equal-area construction

#
$_ &'

()* = 0

#
$-.

/)*
/0 (0 = #

$-.
1(0 = 0

The actual path in the P-V diagram is the line of
constant pressure

)*

)* = 2* + 01 has to be single valued

Phase transition at constant Gibbs free energy

()4 = ()5

1514



Abrupt phase transition
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http://www.iitg.ac.in/santra/course_files/ph704/critical_ph.pdf
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Clausius Clapeyron relation

Phase transition from liquid to vapor at a constant Gibbs free energy
!(#, %, &)

(!) = (!+

Clausius Clapeyron relation

−-)(% + /)(# = −-+(% + /+(#

01

02
=

34536
74576

=
89

8:
=

;

2 8:
, L is the latent heat of the phase transition

• Entropy jumps going from a liquid to a gas -+ − -) = Δ
=>

=2

• Volume expansion going from a liquid to a gas /+ − /) = Δ
=>

=1

Clausius Clapeyron relation tells us how much the phase transition pressure
changes with changing temperature
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Critical phase transition
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http://www.iitg.ac.in/santra/course_files/ph704/critical_ph.pdf



Van der Waals fluids at the critical point !"
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Critical point defined as the inflection point of
the isotherm in the # − % diagram: 

&#
&% = 0, &*#

&%* = 0

Applied	to	the van	der	Waals		equation of state

#" =
>

27A* , !" =
8>
27AC , D" =

E
%"
= 1
3A
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Van der Waals fluids near !"
# = %&!

1 − %) − *%
+

Dimensionless equation of state

#, =
#
#"
, !, =

!
!"
, ., =

.

."

#, +
3
.,+

., −
1
3 = 8

3!,

Isothermal compressibility

23 = − 1.
4.
4# ∼ ! − !" 67, 89: = 1
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Van der Waals fluids near !"
# = %&!

1 − %) − *%
+

Equation of state for relative fluctuations near the critical point
Δ- = #

#"
− 1, Δ/ = !

!"
− 1, Δ% = %

%"
− 1

Δ- = 4 + 6Δ% Δt + 32Δ%
6

Critical exponents: 

• Δ/ = 0 → Δ- ≈ Δ%: → ;<;=
;=

∼ ?<?=
?=

:
, @AB = 3

• Δ- = 0 → Δ% ≈ Δ/C → ?<?=
?=

∼ D<D=
D=

C
, EAB = 1/2
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Van der Waals fluids at the critical point
Internal energy: 

! = # = 3
2&'( + &* =

3
2&'( −

,&-

.

Heat capacity: 

/0 =
1!
1( 0

= 3
2&' ∼ ( − (3 4, 678 = 0
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Ising universality class in the mean-field
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Correspondence between magnetics and fluids at the critical point
Gas-Liquid Magnets

Volume, ! or density, " Mean magnetization, −$
Pressure, % Magnetic field, &
Gibbs free energy, '(%, *) Gibbs free energy, '(&, *)
Compressibility, ,- = − /

0
10
12 Susceptibility, 3 = 14

15

Heat capacity, 62 = −* 178
1-7 2

Heat capacity, 65 = −* 178
1-7 5

Fys4130, 2019


