Lecture 13

27.02.2019

Mean field theory, Phase transitions



Configuration probability distribution

Probability for a microstate with a spatial configuration of particles at positions 7,75, -*-, 'y
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For homogeneous and isotropic systems Py (7, 15, -+, T'y) = Q_Hi<j e—Bu(ri))
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e PROBLEM!
Py (7,75, -+, Ty) is a multidimensional function, and generally difficult to compute

* SOLUTION 2:

* Mean field approximation: Each particle interacts with a constant effective potential field «xmean
interaction potential» induced by all the other particles

 Thermodyamic properties, like pressure, internal energy, can be expressed in terms of these effective
potential



Mean-field approximation: interaction potential

The interaction potential on a particle varies from particle to particle

In the mean field approximation, we assume that all particles experience the same effective potential
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Configurational partition function
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Q. = [ dije P* = (V — Nb)e=P%, b is the particle exclusion volume



Mean-field approximation and self-consistent equation

Canonical partition function
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Helmholtz free energy
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 How do we determine the mean interaction potential, u? u is determined by the self-
consistent equation
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Lenard-Jones type of interaction (strong repulsion on short distance, weak long range attraction):
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Equation of state: Mean-field approximation
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Entropic correction from Energy correction from
exclusion volume attraction forces
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Van der Waals: Mean-field approximation
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Van der Waals fluids at the critical point T,

Critical point defined as the inflection point of
the isotherm in the P — IV diagram:
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Applied to the van der Waals equation of state
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Rescaled P, V, T in units of the critical P., V., T,
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Van der Waals: phase transition below T,

Unstable

Phase separation

Liquid phase and the gas phase are at equilibrium
and the state of their mixture is determined by

Common tangent construction

N, IVQ
Fy(Vy) = 7vff§vl(bﬁ) *‘fﬁf*F}Q,(Vb)
N, Ng
Vl:ﬁvl-l'ﬁvg' N:Nl‘l‘Ng
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Fluid mixture below T,
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Gy = Fy + PV has to be single valued Py
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Maxwell equal-area construction
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P 1g Phase transition at constant Gibbs free energy
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The actual path in the P-V diagram is the line of
constant pressure



Abrupt phase transition

F
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' heat
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http://www.iitg.ac.in/santra/course_files/ph704/critical_ph.pdf

(b) S=—(9F/dT),
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Volume
\" discontinuity
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R —
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(d) V =(dG/oP),
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critical
point

T
S | Latent
' heat
. L=T AS
Liquid ' Gas
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Volume
\'% discontinuity
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Clausius Clapeyron relation

Phase transition from liquid to vapor at a constant Gibbs free energy
G(P,T,N)
dGl - ng

Clausius Clapeyron relation
—SldT + VldP —_ —Sng + ngp

dP _ Sg_Sl _ AS _
dT V4=V, AV TAV’

L is the latent heat of the phase transition
: : o oG
* Entropy jumps going from a liquidtoa gas S; —§; = A (5)
* Volume expansion going from a liquidtoagasV, —V; = A (g—g)
Clausius Clapeyron relation tells us how much the phase transition pressure
changes with changing temperature



Critical phase transition
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(b) S =—(9F/dT),

http://www.iitg.ac.in/santra/course_files/ph704/critical_ph.pdf
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Van der Waals fluids at the critical point T,

Critical point defined as the inflection point of
the isotherm in the P — IV diagram:
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Applied to the van der Waals equation of state
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Van der Waals tluids near T,

pkT
1—pb
Dimensionless equation of state
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Isothermal compressibility
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Van der Waals tluids near T,

pkT 5
= —a
1—pb P
Equation of state for reIativePquctuations near the critical point
_ _I_ P _
Ap—}TC—l, At—TC 1, Ap—pc 1

3
Ap = (4 + 6Ap)At + EA’DB

Critical exponents:
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Van der Waals fluids at the critical point

Internal energy:

3 _ 3 aN?
E = (H) =§NkT+Nu=§NkT—7

Heat capacity:

OFE 3
Cy = (H_T)V = ENk ~ (T — T, ayr =0



Ising universality class in the mean-field

Correspondence between magnetics and fluids at the critical point

Volume, V' or density, p
Pressure, P

Gibbs free energy, G(P,T)

! 19V
Compressibility, k7 = —o
2
Heat capacity, Cp = —T (%
T Specific heat:

Order parameter:
Susceptibility:
Critical isotherm:

)s

Mean magnetization, —M
Magnetic field, B
Gibbs free energy, G(B, T)

Susceptibility, y = Z—IBW

Heat ity, C ——T(OZ—G)
eat capacity, Cz = o17)

Cpox |T —T,|™¢ a=70
M x (T, —T)" B=1/2
X o [T =T,|™" Y=

B o |[M|® §=3
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