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Phase transitions and summary of Module Il



Classical gases and liquids

» Statistical mechanics of weakly-interacting classical indistinguishable particles -
* Translational and rotational symmetric Hamiltonian Hy,
3N 5 17
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* Homogeneous and isotropic matter: gases and liquids r/rm

1 _ 10
* ZN(T»N)=mfda)e ﬁHN(P,q)zmAB_IYV
o Qy = [ dN# e PUGLT2TN)

configurational partition function: contains all the information about the particle positions
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Configuration probability distribution

Probability for a microstate with a spatial configuration of particles at positions 7,75, -*-, 'y

1 - > -
3 2 = — —pU(Try,75, 7
PN(rli 7"2’ ...,'rN) = —e .8 ( 1.2 N)

On

. . > > - 1 — .
For homogeneous and isotropic systems Py (7, 15, -+, T'y) = Q_Hi<j e—Bu(ri))
N

e PROBLEM!
Py (7,75, -+, Ty) is a multidimensional function, and generally hard to compute

* Mean field approximation:

* Each particle interacts with a constant effective potential field «mean interaction potential» induced
by all the other particles

 Thermodyamic properties, like pressure, internal energy, can be expressed in terms of these effective
potential



Mean-field approximation: interaction potential

The interaction potential on a particle varies from particle to particle

In the mean field approximation, we assume that all particles
experience the same effective potential field

U(ry, 7y, ,Ty) = ZZu(’rU) = Zu = Nu

I I#]
Self-consistent equation

B farugm =22, a0
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Mean-field approximation

Canonical partition function

_ 1 Qy
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Helmholtz free energy

V

NA3(T)

Nb) NZ4a
%4

)+1].—Nlen(1——

Fy = —NkT [l (
N n v

Equation of state
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Phase transition

KT _V—Nb KT V2

Critical point defined as the inflection point of the isotherm in the P — V diagram:
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P(V) curve becomes non-monotonic P > (0 isan

unstable branch

0% Fn
V2 .
K = —%a—P < 0 compressibility is negative, sign that

there is a thermodynamic instability
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Abrupt phase transition T < T,

Phase separation

Liquid phase and the gas phase are at equilibrium
and the state of their mixture is determined by

Common tangent construction

| 3 | ; Nl Ng
. 5 g A Fy(V) =~y (V1) + 77 Fy g (V)
Vr N, Ng _
=T VLY, N =N+ N,

In the coexistance region, the pressure is constant

o (aFN) _ Fny() = Fn, (W)
— \ov v, =V, ~ e
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Fluid mixture below T,

Gy | P

y U
<

P >
Maxwell equal-area construction: 9 4 Vy
f dGN = O
1
Gy - Vg Phase transition at constant Gibbs free energy
—szﬂé VdP=0-P;, (V,—V)=| PWV)dVv
j%Dlg P Pig PR Vi dG, = dGg
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critical
point

T
S | Latent
' heat
. L=T AS
Liquid ' Gas
™ T
Volume
\'% discontinuity
\ /
Gas ' Liquid
~—_

P* p

Clausius Clapeyron relation

Phase transition from liquid to vapor at a constant Gibbs free energy
G(P,T,N)
dGl - ng

Clausius Clapeyron relation
—SldT + VldP —_ —Sng + ngp

dP _ Sg_Sl _ AS _ L(T)
dT V4=V, AV TAV’

L is the latent heat of the phase transition
: : o oG
* Entropy jumps going from a liquidtoa gas S; —§; = A (5)
* Volume expansion going from a liquidtoagasV, —V; = A (g—g)
Clausius Clapeyron relation tells us how much the phase transition pressure
changes with changing temperature



Gas state

Liquid-gas phase transitions R
* Van der Waals equation of state for fluids i — © o ©
NkT  aN? PLEre
T T T

* Abrupt phase transition is represented by the phase coexistance boundary
Pig (Tig ) inthe P-T phase diagram

* First order derivaties of the thermodynamic potential are discontinuous: entropy and
volume

* Clausius Clapeyron relation: How the pressure depends on the temperature on the
vaporisation/condensation phase boundary Liquid

* Phase transition from liquid to vapor at a constant Gibbs free energy G(P, T, N) «— Critical point

* There is a unique critical point (T., P., V) at which the phase transition turns

o Solid
critical

* First order derivaties of the thermodynamic potential are continuous, but the second order Gas
derivaties, like heat capacity, susceptibility, are power-law divergent neat the critical point

« Critical phase transitions are robust to microscopic details and exhibit universal scaling < Triple point
properties, e.g. critical scaling exponents
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Abrupt phase transition

F
S @t
' heat
. L=T AS
Liquid : Gas
™ T

http://www.iitg.ac.in/santra/course_files/ph704/critical_ph.pdf

(b) S=—(9F/dT),
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G States

Volume
\" discontinuity
\ /

Gas ' Liquid
R —

P* p
(d) V =(dG/oP),
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Critical phase transition

Liquid

No Latent
i heat

! Gas
T, T
(b) S =—(9F/dT),

http://www.iitg.ac.in/santra/course_files/ph704/critical_ph.pdf

.

Gas : Liquid
Pc P
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V No volume
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Gas |\ Liquid

PP
(d) V =(9G/oP);
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Van der Waals fluids at the critical point T,

Critical point defined as the inflection point of
the isotherm in the P — V' diagram:

0P _ aZP_O
ov ovz

Applied to the van der Waals equation of state

. a _ 3a N 1
~27p2’ ¢ T 27pk’ PeT VT 3p
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Van der Waals tluids near T,

pkT
1—pb
Dimensionless equation of state

P =

P. = T, = V. =

Vv
Ve

3 1 38
hgz)(h-3) =37

Isothermal compressibility

P T
PC ) TC )

Kt ==33p "~ IT —Tc|™, Ymr =1
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Van der Waals tluids near T,

pkT 5
= —a
1—pb P
Equation of state for reIativePquctuations near the critical point
_ _I_ P _
Ap—}TC—l, At—TC 1, Ap—pc 1

3
Ap = (4 + 6Ap)At + EA’DB

Critical exponents:

PNET:)
« At =0 - Ap =~ Ap?® —>‘P PC~‘pppC , Oyr =3
g |p=pc| _ |T-Te|P B
« Ap =0 Ap ~ At —>‘ ~ =" Bur=1/2
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Van der Waals fluids at the critical point

Internal energy:

3 _ 3 aN?
E = (H) =§NkT+Nu=§NkT—7

Heat capacity:

OFE 3
Cy = (H_T)V = ENk ~ (T — T, ayr =0



Ising universality class in the mean-field

Correspondence between magnetics and fluids at the critical point

Volume, V' or density, p
Pressure, P

Gibbs free energy, G(P,T)

! 19V
Compressibility, k7 = —o
2
Heat capacity, Cp = —T (%
T Specific heat:

Order parameter:
Susceptibility:
Critical isotherm:

)s

Mean magnetization, —M
Magnetic field, B
Gibbs free energy, G(B, T)

Susceptibility, y = Z—IBW

Heat ity, C ——T(OZ—G)
eat capacity, Cz = o17)

Cpox |T —T,|™¢ a=70
M x (T, —T)" B=1/2
X o [T =T,|™" Y=

B o |[M|® §=3
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Configuration probability distribution

Probability for a microstate with a spatial configuration of particles at positions 7y, 75, *-, 'y

1 > o> -
- - - _ —LU(Tr Vo, 1
PN(TllTZI“.'TN) = —0e B (1 2 N)

Qn

. . - - - 1 —_ I
For homogeneous and isotropic systems Py (7, 15, =+, Ty) = Q—HKJ- e~ Pulri))
N

e PROBLEM!
Py (7,75, -+, Ty) is a multidimensional function, and generally difficult to compute

* SOLUTION:

* We construct an hierarchie of reduced particle configurations (clusters expansion) in which we fix few particle positions

and integrate out the remaining spatial coordinates 'ﬁ ¥
* We contruct the first two terms in the cluster expansion: mean particle density and pair-correlation function

* Thermodyamic properties, like pressure, internal energy, can be expressed in terms of these reduced probabilities



Correlation functions

Mean density of particles is uniform for a trans/ational and isotropic system

dr o~
\

N
N
=1

Density correlation of pairs of particles separated by 7 — 7'

N N
(n(F)n(7") 225(F—n)5(r —7)) = 67 -7

p?g(@ —7") + ps(T —7"),
= p?g(IF =7']) = p*g(r)



Average properties

Average energy

3N N
(F) = -k + %f d7 u(r)g(r)

Particle number fluctuations
(AN?) = (N) + (N)pJ d7 [g(r) — 1]

Virial theorem

2(K) = —<2Fk-ﬁk

k

Np . .,
— 3NkT = 7f drr? u'(r) g(r) + 3PV

P = p[kT—% fd?ru’(r)g(r)]



