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Classical gases and liquids
• Statistical mechanics of weakly-interacting classical indistinguishable particles

• Translational and rotational symmetric Hamiltonian !"
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• Homogeneous and isotropic matter: gases and liquids
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• R" = ∫ F"9⃗ HIJS T⃗U,T⃗V,⋯,T⃗L

configurational partition function: contains all the information about the particle positions
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Configuration probability distribution
Probability	for	a	microstate with a	spatial	configuration of particles at positions 4⃗5, 4⃗7,⋯ , 4⃗9

:9 4⃗5, 4⃗7,⋯ , 4⃗9 =
1
=9

>?@A B⃗C,B⃗D,⋯,B⃗E

For homogeneous and isotropic systems :9 4⃗, 4⃗7,⋯ , 4⃗9 =
5
FE
∏HIJ >

?@K BLM

• PROBLEM!
:9 4⃗5, 4⃗7, ⋯ , 4⃗9 is a multidimensional function, and generally hard to compute

• Mean field approximation:
• Each particle interacts with a	constant effective potential field «mean interaction potential»	induced
by	all	the other particles

• Thermodyamic properties, like pressure, internal energy, can be expressed in terms of these effective
potential
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Mean-field approximation: interaction potential
The	interaction potential on a	particle varies from	particle to	particle
In	the mean field approximation,	we assume that all	particles
experience the same	effective potential field
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Mean-field approximation
Canonical	partition function
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Phase transition
!
"#

=
%

& − %(
−
)
"#

%*

&*
Critical point defined as the inflection point of the isotherm in the ! − & diagram: 
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P(V) curve becomes non-monotonic ?@
?A
> 0 is an 

unstable branch
?CDE
?AC

< 0 free energy increases

G = − H
A
?A
?@
< 0 compressibility is negative, sign that

there is a thermodynamic instability
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Liquid	phase and	the gas	phase are at	equilibrium

and	the state of their mixture is	determined by		

Common tangent	construction
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Phase separation

Abrupt phase transition G < GI
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In	the coexistance region,	the pressure is	constant

K = −
M9:
M; N

= −
9:C ;B − 9:@ ;?

;B − ;?
= KOP



Fluid mixture below !"
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Maxwell equal-area construction: 
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Phase transition at constant Gibbs free energy
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Clausius Clapeyron relation

Phase transition from liquid to vapor at a constant Gibbs free energy
!(#, %, &)
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Clausius Clapeyron relation
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2 8:
, L is the latent heat of the phase transition

• Entropy jumps going from a liquid to a gas -+ − -) = Δ
=>

=2

• Volume expansion going from a liquid to a gas /+ − /) = Δ
=>

=1

Clausius Clapeyron relation tells us how much the phase transition pressure
changes with changing temperature
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Liquid-gas phase transitions
• Van der Waals equation of state for fluids 
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• Abrupt phase transition is represented by the phase coexistance boundary
!+, (%+, ) in the P-T phase diagram 
• First order derivaties of the thermodynamic potential are discontinuous: entropy and 

volume
• Clausius Clapeyron relation: How the pressure depends on the temperature on the

vaporisation/condensation phase boundary

• Phase transition from liquid to vapor at a constant Gibbs free energy /(!, %, #)
• There is a unique critical point (12, 34, 54) at which the phase transition turns 

critical
• First order derivaties of the thermodynamic potential are continuous, but the second order 

derivaties, like heat capacity, susceptibility, are power-law divergent neat the critical point
• Critical phase transitions are robust to microscopic details and exhibit universal scaling

properties, e.g. critical scaling exponents
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Abrupt phase transition
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http://www.iitg.ac.in/santra/course_files/ph704/critical_ph.pdf



Critical phase transition
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Van der Waals fluids at the critical point !"
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Critical point defined as the inflection point of
the isotherm in the # − % diagram: 
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Applied	to	the van	der	Waals		equation of state
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Van der Waals fluids near !"
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Dimensionless equation of state
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Isothermal compressibility

23 = − 1.
4.
4# ∼ ! − !" 67, 89: = 1
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Van der Waals fluids near !"
# = %&!
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Equation of state for relative fluctuations near the critical point
Δ- = #
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− 1

Δ- = 4 + 6Δ% Δt + 32Δ%
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Critical exponents: 
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Van der Waals fluids at the critical point
Internal energy: 
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Ising universality class in the mean-field
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Correspondence between magnetics and fluids at the critical point
Gas-Liquid Magnets

Volume, ! or density, " Mean magnetization, −$
Pressure, % Magnetic field, &
Gibbs free energy, '(%, *) Gibbs free energy, '(&, *)
Compressibility, ,- = − /

0
10
12 Susceptibility, 3 = 14

15

Heat capacity, 62 = −* 178
1-7 2

Heat capacity, 65 = −* 178
1-7 5
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Configuration probability distribution
Probability	for	a	microstate with a	spatial	configuration of particles at positions 4⃗5, 4⃗7, ⋯ , 4⃗9

:9 4⃗5, 4⃗7, ⋯ , 4⃗9 =
1
=9

>?@A B⃗C,B⃗D,⋯,B⃗E

For homogeneous and isotropic systems :9 4⃗, 4⃗7, ⋯ , 4⃗9 = 5
FE
∏HIJ >?@K BLM

• PROBLEM!
:9 4⃗5, 4⃗7,⋯ , 4⃗9 is a multidimensional function, and generally difficult to compute

• SOLUTION:

• We construct an hierarchie of reduced particle configurations (clusters expansion) in which we fix few particle positions

and integrate out the remaining spatial coordinates

• We contruct the first two terms in the cluster expansion: mean particle density and pair-correlation function

• Thermodyamic properties, like pressure, internal energy, can be expressed in terms of these reduced probabilities
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Correlation functions
Mean	density of particles is	uniform	for	a	translational and	isotropic system	

3 5⃗ = 7
89:

;

< 5⃗ − 5⃗8 = > =
?
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Density correlation of pairs	of particles separated by	5⃗ − 5⃗′

3 5⃗ 3 5⃗′ = 7
89:

;
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< 5⃗ − 5⃗8 < 5⃗′ − 5⃗D ≡ F 5⃗ − 5⃗′

F 5⃗ − 5⃗G = >HI 5⃗ − 5⃗G + >< 5⃗ − 5⃗′ ,
>HI 5⃗ − 5⃗′ ≡ >HI 5⃗ − 5⃗′ = >HI 5
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Average properties
Average	energy
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Particle number fluctuations

Δ-G = - + - 2∫ 46⃗ 8 6 − 1

Virial theorem

2 J = − K

L

6⃗L ⋅ N⃗L → 3-/0 =
-2

2
∫ 46⃗6G 7′(6) 8(6) + 3QR

Q = 2 /0 −
2

6
∫ 46⃗ 6 7T 6 8 6
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