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Quantum Gases (Module V)
Bose statistics of photons



Module IV:Quantum gases

on. 6. mar. Bose statistics of phonons

fr. 8. mar. Debye theory of phonons

on. 13. mar. Ideal Bose atoms, Bose-Einstein condensation

fr. 15. mar. Weakly interacting atoms, Bose Einstein condensation

Fermi ideal gases

on. 20. mar. (Oblig 1)

fr. 22. mar. Summary and questions




Quantum gas

Consider a system of N = Zj n; free quantum particles with number n; of particles in each quantum state ¢;
Fermions: n; = 0,1

Bosons: n; = 0,12,

Canonical partition function:

Conditioned sum weighted by the Boltzmann factor over all microstates with {n;} partition of particles between the energy
levels {€;}, such that energy and number of particles in that microstate are

ENZZleEj, N = an

J J

ZN — Z{nj}e_,BEN — Z{nj}e_ﬁ Z] E]n],Wlth Z] n] =N (f|X€d)



Quantum gas

Consider a system of N = Zj n; quantum particles with number n; of particles in each quantum
state €;
J

Fermions: n; = 0,1
Bosons: n; = 0,12, -

Grand-canonical partition function:
Unconditioned sum weighted by the Gibbs factor over all microstates with {n;} partition of particles between

the energy levels {¢;},
(0/0)
= Z z o~ B Zj(ej=mn;

N=0 {le}

T = 2 e BLjej—mj — 1_[ 2 e~ Blej—u)n;
J nj

{n;}



Quantum gas: Thermodynamic properties

Grand-canonical partition function:

=T 1 +1 | top sign: fermions
= j(lie—ﬁ(ej—ﬂ)) " |bottom sign: bosons

Landau free energy:
Q(T,V,u) = —PV = —kT log =

(0 = $kTZ log [1 + e—ﬁ(ff—ﬂ)]
7

2.; = sum over all quantum states



Quantum gas: Themodynamic properties

Pressure:.
PV = ikTZ log (1 + e—ﬁ(ej‘“))
J

Average number of particles:

1
(Ny=) o

J

Average energy:

_ g
By =) =

J



Quantum Gas: Density of states

Replace the sum over quantum states by an integral over energy weighted by
the density of states as a function of energy:

z = [ deD(¢€)
J



Quantum density of states

Lets take for example the average number of particles

1
(Ny=> T

1
= fdee,g(e_ﬂ) i 125(61 — E)
J

= [ de

eBle-1) +1 D(e)

Density of states: the number of allowed quantum states per unit energy for a particle at a given energy €:

D(e) = 25(61- — E)
J



Density of states: Thermodynamics of quantum gases

2 = [ deD(¢)
j
Pressure:.
PV = +kT| deD (¢) log(l + e‘ﬁ(e_“))

Average number of particles:

19 1
(N) = Eﬁlogz = [ deD(e) NG = [ de D(€){n),

Average energy:

(E) = [ deD(e)

B T 1 = [ de D(€){n).€



Photons:

Light: traveling electromagnetic (EM) waves

* EM modes are described by

- . . . M 1 27-[
» wavevector k , which is restricted to discrete values k = - n

» frequency of an EM mode is w = C|E| = ck

Oscillation of the

~electromagnetic field

 EM mode has two transverse modes ° A g

- - - - E

k-E =0, k-B=0

B z
Photons: quanta of light E
* Each EM mode is populated by photons, each with a quanta of ——=>
Cc
energy: B

€ = hkc = hw
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Equilibrium state of a photon gas: .

EM modes in an L3 periodic box

* EM modes are described by

>wavevector k , Which is restricted to discrete values k = .

»frequency of an EM mode is w = C|l_(>| = ck

* EM mode is populated by photons, each with a quanta of energy:
€, = hkc = hw

Number of photons ny occupying EM mode with wavevector k= guantum
state of the electromagnetic field (quantum state is representated by a state

- -
vector n or wavevector k)



Photon gas: uncountable, u = 0

Grand-canonical partition function:

Grand-canonical partition function at a given wavenumber k:

1
— — — hck _—
E(k) = z e TPk — T —phek

nE=0

1

k

00)




Photongas: u =0

Grand-canonical partition function

1
=T 1_[:.(]() B 1_[1 — p—Bhck
ﬁ il

Landau potential:

Q(T,V) = —=kT Z logZ(k) = kT z log(l _ e—ﬁhck)
n 7



Photon Density of states

-

k = T N Is the quantization of the wavevector with the size of the box

n Is a state vector.

7 777 ~ 2] dit = [ dn Dy(n), D, (n) = 2x4mn?

Ny My Ny

i = 2o [ dk = [dkD(K), D(k) =k

(2 )3

* Sum over modes is replaced by an integral in the limit of sufficiently large volume or high enough T,
21thc

such that there are many states with €,, = n < kT contributing to the sum

* Factor 2 accounts for the two transverse polarizations



Density of states

D, (n)dn = 2x4mn?dn number of modes with quantum number between n and n+dn

* Number of modes with wavenumber between k and k + dk = Number of modes
with frequency between w and w + dw

74
D(k)dk = D, (w)dw — D, (w) = —3 w?

* Number of modes with frequency between w and w + dw = Number of modes
with energy between € and € + de

74
D,(w)dw = D.(e)de » D.(¢€) = 7303 €2



Photon gas: thermodynamic properties

Photon Gas in thermodynamic equilibrium: thermal radiation

Blackbody:

Idealized body that absorbs/emits photons of any wavelength and
reflects none.

Absorbed energy = emitted energy (at each frequency)

Blackbody radiation:

Backbody radiation is the radiatien emitted by a black body at
temperature T

At finite temperature, a blackbody will glow with a «colour» dependingon T



Planck distribution:

Spectral energy distribution of a photon gas

Average energy of a photon gas:

(E)(T,V) = [ de :Z,gezel = [dw lzzéf)_mf
= Vi fooda) w® 2
m2c3 J, ebhow _ 1 8 h/(2m)w
187

Energy per unit volume at a given frequency w

(spectral energy density)

(E)
v = [ dw€(w,T)

(1)3

m2c3 efhow — 1

E(w,T) =
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Wien's displacement law

kT
Wmax(T) = (7,( ~ 2.822

Frequency with the max spectral density

(frequency with maximum light intensity)

de€(w, T)

dw
3—¢= 33_6»( = Bhwmax

0-

- m2c3 ePhw — 1




Planck distribution
Spectral energy density
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<£V> = fda)E(a), T)
3
E(w,T) = “

m2c3 efhw — 1

E(w, T)dw = u(d)dA




Rayleigh-Jeans ultraviolet catastrophe

Classical limit how < kT

£ T — w3
(. T) =53 e — 1
E(w, T) = 7'[2 5 T ~ kT w

Equipartition of the average energy

density for each mode —
Energy density increases with

frequency leading to the ultraviolet

catastrope

Radiated Intensity
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Toward the
“ultraviolet
catastrophe"

!

Rayleigh-Jeans Law

Planck Law

8nv 2 —
Curves agree at Yy v

. c KT~ 4
very low frequencies e

Frequency



Stephan’s law: Emission energy density ~ T4

lotal energy per unit volume emitted at T

00 3
@:thww
0

V  m?c3 efhw — 1

Substitute: x = fhw

() _ Gt _f‘”d  _m
V  m2c3p3 ¥ 3T e T17 15
21,4
(E) -k -

V  15¢373



Free energy of a photon gas
Becauseu = 0 for photons F(T,V) = Q(T, V)

VkT
F(T,V) = kT dwD(w)log(1 — e™F¢) = 33 | dww?log(1 — e~ Fhw)
[Integration by parts
Vh ; e~ Phw
F(T,V) = ——3 J dww? — g
2
F(T,V) = — (kT)*

45h3¢3



Equation of state

Radiation Pressure
PV = —kT [ dwD(w)log(1 — e F"®) = —F (T, V)

T2 .
F(T,V) = = 7z (KT)
2
T
_ 4
P = 45h3 ¢3 (kT)
(E)
P=-—L_(E)=3PV

3V



Entropy

2

—_ 4
F(T,V) = 157303 (kT)
(VT — (6F) _4V772k4T3 3
V,1) = T/, 45h3¢3



Heat capacity

(E)  m’k* i
V  15c¢3h3

T3 ~ T3

- (O(E)) ~ 4Vm*k*
V' \ar/, 15#r3¢3

By comparison with the ideal gas, where Cy = ?’Zlk is independent of T



Density of photons at a given T

Average occupation number for the state with frequency w

1
(M) = i

Average number of photons at temperature T

v 00 2
(NY(T,V) = J doD(@)na) = — | do—go—
0

Density of photons at T:

T—<N>— kT)BIZ I—de X’ 2.404
p()_V_(hc a2 2T 1~




