Lecture 16

08.03.2019

Thermal vibrations and Phonons

Quantum gas

Consider a system of $N=\sum_{j} n_{j}$ quantum particles with number n_{j} of particles in each quantum state ϵ_{j}

Bosons: $\quad n_{j}=0,1,2, \cdots$
Grand-canonical partition function:
Conditioned sum weighted by the Gibbs factor over all microstates with $\left\{n_{j}\right\}$ partition of particles between the energy levels $\left\{\epsilon_{j}\right\}$,

$$
\Xi_{\text {bosons }}=\prod_{j} \sum_{n_{j}} e^{-\beta\left(\epsilon_{j}-\mu\right) n_{j}}=\prod_{j}\left(\frac{1}{1-e^{-\beta\left(\epsilon_{j}-\mu\right)}}\right)
$$

Quantum gas: Themodynamic properties

Landau free energy:

$$
\begin{gathered}
\Omega(\mathrm{T}, \mathrm{~V}, \mu)=-P V=-k T \log \Xi \\
\Omega=k T \int d \epsilon D(\epsilon) \ln \left[1-e^{-\beta(\epsilon-\mu)}\right]
\end{gathered}
$$

$D(\epsilon) d \epsilon \equiv$ number of quantum states with energy between ϵ and $\epsilon+d \epsilon$ Pressure:

$$
P V=-k T \int d \epsilon D(\epsilon) \log \left(1-e^{-\beta(\epsilon-\mu)}\right)
$$

Average number of particles:

$$
\langle N\rangle=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon}=\int d \epsilon D(\epsilon) \frac{1}{e^{\beta(\epsilon-\mu)}-1}
$$

Average energy:

$$
\langle E\rangle=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon} \epsilon=\int d \epsilon D(\epsilon) \frac{\epsilon}{e^{\beta(\epsilon-\mu)}-1}
$$

Photon gas in a box: Blackbody radiation

Energy of a photon at a give frequency/wavenumber: $\epsilon=\hbar \omega=\hbar \mathrm{k} c=\frac{h c}{L} n, \quad k=|\vec{k}|$, $n=|\vec{n}|$
Density of states:
$D(n) d n=2 \times 4 \pi n^{2} d n$ number of modes (quantum states) with state number between n and $\mathrm{n}+\mathrm{dn}$
$D_{\epsilon}(\epsilon) d \epsilon=\frac{V}{\pi^{2} \hbar^{3} c^{3}} \epsilon^{2} d \epsilon=D(n) d n$
$D_{\omega}(\omega) d \omega=\frac{V}{\pi^{2} c^{3}} \omega^{2} d \omega=D(n) d n$
Landau free energy:

$$
\Omega=k T \int d \omega D_{\omega}(\omega) \ln \left[1-e^{-\beta \hbar \omega}\right], \quad \mu=0
$$

Photon gas in a box: Blackbody radiation

Average energy of an EM mode with frequency $\boldsymbol{\omega}$ is the energy of a photon occupying that mode \times the average number of photons

$$
\langle\epsilon\rangle(\omega, T)=\hbar \omega\langle n\rangle(\omega, T)=\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}
$$

Average energy:

$$
\begin{aligned}
& \frac{\langle E\rangle}{V}=\int d \omega \varepsilon(\omega, T)=\frac{1}{V} \int d \omega D_{\omega}(\omega)\langle\epsilon\rangle(\omega) \\
& \frac{\langle E\rangle}{V}=\frac{\hbar}{\pi^{2} c^{3}} \int_{0}^{\infty} d \omega \frac{\omega^{3}}{e^{\beta \hbar \omega}-1}=\frac{\pi^{2} k^{4}}{15 c^{3} \hbar^{3}} T^{4}
\end{aligned}
$$

Plancks distribution: spectral energy density

$$
\varepsilon(\omega, T)=\frac{\hbar}{\pi^{2} c^{3}} \frac{\omega^{3}}{e^{\beta \hbar \omega}-1}
$$

Average number of particles:

$$
\langle N\rangle=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon}=\frac{V}{\pi^{2} c^{3}} \int_{0}^{\infty} d \omega \frac{\omega^{2}}{e^{\beta \hbar \omega}-1}=\left(\frac{\boldsymbol{k} \boldsymbol{T}}{\hbar \boldsymbol{c}}\right)^{3} \frac{\boldsymbol{I}_{2}}{\boldsymbol{\pi}^{2}}
$$

Radiation Pressure

$$
P V=-\frac{k T V}{\pi^{2} c^{3}} \int d \omega \omega^{2} \log \left(1-e^{-\beta \hbar \omega}\right)=-F(T, V)=\frac{V \pi^{2}}{45 \hbar^{3} c^{3}}(k T)^{4}
$$

Solid state material: crystal

Harmonic solids: atoms in a crystal held at lattice sites by elastic forces

Lattice vibrations: sum of harmonic oscillators

$$
H=\frac{1}{2} \sum_{i=1}^{3 N}\left(p_{i}^{2}+\omega_{i}^{2} q_{i}^{2}\right)
$$

Virial theorem: $\mathrm{U}=6 \mathrm{~N} \frac{k T}{2}=3 N k T$

Heat capacity of solids

Lattice vibrations: sum of harmonic oscillators

$$
H=\frac{1}{2} \sum_{i=1}^{3 N}\left(p_{i}^{2}+\omega_{i}^{2} q_{i}^{2}\right)
$$

Virial theorem: $\mathrm{U}=6 \mathrm{~N} \frac{k T}{2}=3 N k T \rightarrow C_{V}=3 N k$ Dulong-Petit's law

Heat capacity: $C_{V}=\frac{\partial U}{\partial T}=3 N k$ independent of T !
Puzzle of $C_{V}(T)$ at low temperature

Phonon gas: Einstein model

- Phonon: quanta of lattice vibrations (elastic waves) analogous to quanta of EM waves (photons)

- Let us assume that all atoms vibrate with the same frequency, hence all phonons occupy the same mode and have the energy $\epsilon_{\omega}=\hbar \omega$
- By anology with photons, the average number of phonons for a given frequency mode ω follows the Bose-Einstein distribution

$$
\left\langle n_{\omega}\right\rangle=\frac{1}{e^{\beta \hbar \omega}-1}
$$

Einstein model: thermodynamic propertieds

- Average energy of phonons with frequency ω

$$
\langle E(\omega)\rangle=\hbar \omega\left\langle n_{\omega}\right\rangle=\frac{\hbar \omega}{e^{\beta \hbar \omega}-1}
$$

- Total energy of the solid:

$$
\mathrm{U}=3 N\langle E(\omega)\rangle=\frac{3 N \hbar \omega}{e^{\beta \hbar \omega}-1}
$$

- Heat capacity:

$$
\mathrm{C}_{\mathrm{V}}=\frac{\mathrm{dU}}{\mathrm{dT}}==3 N k\left(\frac{\hbar \omega}{k T}\right)^{2} \frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}}
$$

Einstein model: Heat capacity

- Heat capacity:

$$
\mathrm{C}_{\mathrm{V}}=\frac{\mathrm{dU}}{\mathrm{dT}}=3 N k\left(\frac{\hbar \omega}{k T}\right)^{2} \frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}}
$$

$\cdot \mathrm{C}_{\mathrm{V}} \approx\left\{\begin{array}{c}3 N k\left(\frac{\hbar \omega}{k T}\right)^{2} e^{-\beta \hbar \omega}, k T \ll \hbar \omega \\ 3 N k, k T \gg \hbar \omega\end{array}\right.$

- Experimenatlly $\mathrm{C}_{\mathrm{V}}(T)$ goes to 0 , but not exponentially

Phonon gas: Debye model

- The assumption that all atoms vibrate at the same frequency is relaxed!

Atoms vibrate with different frequencies and a linear dispersion $\omega=k v$, where v is the sound wave in the solid

- Density of elastic modes is analogous to the density of states for photons
 (in the long-wavelength approximation, continuum elastic medium)

$$
\begin{aligned}
& \sum_{\vec{n}}=\sum_{n_{x}} \sum_{n_{y}} \sum_{n_{z}} \approx_{N, L \rightarrow \infty} 3 \int d \vec{n}=3 \int d n 4 \pi n^{2}=3 \frac{V}{(2 \pi)^{3}} \int d \vec{k}=\int d k D(k) \\
& D_{n}(n)=3 \times 4 \pi n^{2}, \quad D(k)=3 \frac{V}{2 \pi^{2}} k^{2}, \quad D_{\omega}(\omega)=3 \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{2}} \frac{d k}{d \omega}=3 \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{3}}
\end{aligned}
$$

- Factor 3 accounts for three polarizations of the sound waves: 2 transverse and 1 longitudinal

Debye model: Density of states

- Density of states for a phonon at a given frequency

$$
D(\omega)=3 \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{3}}
$$

- Spectrum of possible wavelengths in a solid is bounded by the system size $\lambda_{\max }=L \rightarrow \infty$ and the lattice distance $\lambda_{\text {min }}=2 d$
- This means that
- $\omega \in\left[0, \omega_{D}\right], \omega_{D}=\frac{\pi v}{d}$ upper bound on the allowed frequencies

Debye frequency

Density of elastic modes is analogous to the density of states for photons

$$
D(\omega)=3 \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{3}}, \text { for } 0 \leq \omega \leq \omega_{D}
$$

- Total number of modes: $3 N$ normal modes (in 3D) for N atoms

$$
3 N=\int_{0}^{\omega_{D}} d \omega D(\omega)=3 \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2}
$$

Debye frequency $\omega_{D}=v\left(\frac{6 \pi^{2} N}{V}\right)^{\frac{1}{3}} \rightarrow \omega_{D}=\frac{2 \pi v}{\lambda_{\min }}=v\left(6 \pi^{2} \rho\right)^{\frac{1}{3}}, \quad \rho=\frac{N}{V}$

Debye model: Thermodynamics

- Density of elastic modes is analogous to the density of states for photons

$$
D(\omega)=3 \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{3}}, \text { for } 0 \leq \omega \leq \omega_{D}=v\left(\frac{6 \pi^{2} N}{V}\right)^{\frac{1}{3}}
$$

- Total average energy of phonons

$$
U(T, V)=\int_{0}^{\omega_{D}} d \omega D(\omega) \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}=3 k \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2} \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}
$$

- Heat capacity

$$
C_{V}(T)=\left(\frac{\partial U}{\partial T}\right)_{V}=3 k \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2}\left(\frac{\hbar \omega}{k T}\right)^{2} \frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}}
$$

Debye model: Heat capacity

$$
C_{V}(T)=3 k \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2}\left(\frac{\hbar \omega}{k T}\right)^{2} \frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}}
$$

$$
x=\frac{\hbar \omega}{k T}, \quad T_{D}=\frac{\hbar \omega_{D}}{k}
$$

$$
\begin{gathered}
C_{V}(T)=3 k \frac{V}{2 \pi^{2} v^{3}}\left(\frac{k T}{\hbar}\right)^{3} \int_{0}^{\frac{T_{D}}{T}} d x \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} \\
C_{V}(T)=9 N k\left(\frac{T}{T D}\right)^{3} F\left(\frac{T_{D}}{T}\right), \quad F(y)=\int_{0}^{y} d x \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}}
\end{gathered}
$$

High T limit: $T \gg T_{D} \rightarrow y=\frac{T_{D}}{T} \ll 1$

$$
\begin{gathered}
F(y)=\int_{0}^{y} d x \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}}=\int_{0}^{y} d x \frac{x^{4}}{x^{2}}=\frac{1}{3} y^{3} \\
\boldsymbol{C}_{\boldsymbol{V}}(\boldsymbol{T}) \approx \mathbf{3 N k}, \quad \boldsymbol{T}>\boldsymbol{T}_{\boldsymbol{D}}
\end{gathered}
$$

Debye model: heat capacity

$$
\begin{aligned}
C_{V}(T) & =9 N k\left(\frac{T}{T D}\right)^{3} F\left(\frac{T_{D}}{T}\right), \\
F(y) & =\int_{0}^{y} d x \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}}
\end{aligned}
$$

Low T limit: $T \ll T_{D}$

$$
\begin{array}{r}
F(y) \rightarrow_{y \rightarrow \infty} F(y)=\int_{0}^{\infty} d x \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}}=\frac{4 \pi^{4}}{15} \\
C_{V}(T) \approx \frac{12}{5} N k \pi^{4}\left(\frac{T}{T_{D}}\right)^{3}
\end{array}
$$

