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|deal Bose gas
Bose Einstein Condensation



Bose-Einsteln statistics

Generic system of N = Z]- n; free bosons with occupation number n; = 0,1,2 --- corresponding to energy state ¢;
A microstate (E, N;) is described by a specific distribution of bosons over the energy states
Eszzejnj, NS=an
J J
Grand-canonical partition function: unconditioned weighted sum over all microstates, i.e. over all particle distributions {n;}
corresponding to energy levels {¢;}
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Landau free energy:
Q(T,V,u) = =kTInE(T,V,u) = kTZln ll — e'ﬁ(ef‘”)] = kT [ deD.(€) In[1 — e7Fle~1)]
j

Density of states D.(e)- number of quantum states per energy interval



Bose-Einstein gas: Thermodynamic properties

Average number of particles:
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Average energy:
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Pressure:Q =U —TS — uN = —PV
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|deal Bose gas: Density of states in 3D

Ideal gas of Bose atoms (interactions between atoms are negligible)

* Energy levels for a particle in a box with periodic boundary conditions:

_flz 27T2—>2_fl2 271'22 - .
en=—\7) Inl*=-~-(7) n% = (e, Ny, Ng), Ny integers

* Quantum state of the particle is described by its wavefunction Y, =

2T - -
e L " which is determined by 71

Number of available states between modes with n and n + dn in 3D
D(n)dn = 4nn?dn
Density of states corresponding to energy e€:
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|deal Bose gases: Density of states in 2D

* Energy levels for particles on a flat domain with area A = L?:
en =1 ()" 2
nooam\L ’
2TMi— -

The quantum state is given by ¢y = eZ ", with i = (ny, ny)

Number of quantum states between modes with n and n + dn:

D(n)dn = 2mndn

Density of states corresponding to energy ¢, is then
Am

2 mh?
In 2D, the density of states is independent of energy

dn
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3D 2D

—D(e)~ const.

—ne)
—D(e)n(e)

Dc(€)

Notice that D.(e)n(e) = eBle—w_1

approaches zero for small € in 3D. This is not the case in 2D and 1D.

Prediction for the 3D ideal Bose gas:
Bose Einstein Condensation of particles in the ground state at sufficiently low temperatures
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|deal Bose gas: average gas density

Let us have a look at the average number of particles in 3D:

0 D(e)
— <
(N) jo deeﬁ<€-u>—1’ u<0,
( ) 3/2 :_l
. N 1 00 2
Bose gas density: pex (1, T) = 77 = 7= mhg Jo de —eﬁ(:—ﬂ)—l

(A = efn, X = ,86)
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Pex (/L T) = (/1)

A(T) =

2mkT

Pex (A, T) = A—>(T)F (1)

approaches its maximumvalueas A = 1 (u 7 0)

Fys4130, 2019

0 0.5



Critical average gas density po(T)

Pex (4, T) = A3 (T)F (D), (1)
Pex (A, T) approaches its maximum valueas 1 —» 1 (u 7 0)
For fixed T, the density p,, increases by adding particles into the system. As the density p,,

increases, the chemical potential u also increases according to Eq. (1). But, u can increase up to its
maximum value u = 0 corresponding to a maximal (critical) density

) o 43 em
T) = A3(T)F(1 =A_3T—fd
pc(T) (T)F(1) ()\/ﬁo X o B
3 1 0o x%_l 1 °°<Q 11
¢ (5) = @ J, dx —— = X157, Riemann zeta function
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Average density in the ground state

pex(A: T) — A_B(T)F(/D;

Pex (A, T) saturates at p(T) = A™3(T)¢ (3) wheni - 1 (u 2 0)

Q: What happens to all the particles added to this system beyond p¢(T) density?

A: Particles populate the ground state. This is not accounted for in the integral because of the
density of states D(€) ~ \/€ =¢o 0

Corrected particle density:

The total number of particles is composed of a mixture of particles in the ground
state with density py and particles in the excited states with an excess density p,,

( T)—12 1 1 1 N -
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Bose-Einstein condensation at T,

At a given temperature T, density p and chemical potential u are related by the following equation

1 1
P, =1 T Pex(To 1) = po(T) 1) + pex (T, 1)

However, at and below the critical temperature T,, the density ceases to be a function of u, sinceu =0

At the critical point, the total density p is determined by the maximum excess density

p(TO) = Pl (T = 0) = A3TE 5

(Notice: the ground state density at the critical point is actually zero)

BelowT,:
A macroscopic fraction of particles condense into the ground state with the zero momentum
* Chemical potential u = 0 remains zero for all temperatures below T .

* Excess density depends only on temperature and actually decreases with decreasing temper:

* Ground state density becomes non-zero and increases with decreasing temperature
Condensation in the momentum space means that particles becomes delocalized in space

Critical temperature for Bose Einstein condensation:
Determined by the density of the bose gas

T.(p) = w ((p%)

W N
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Excess density Py

/Ze—x

pex (T, /1) —

xZe * ® 1 S ® 1
J dx/l =(<1) Af dxx2Ze™(1+ e ¥+ 2%e 2 +...) = z/ln f dx xZe ™
0 = 0

® 1 3 3.4 _ _3 /3 3T
fo dx x2e™™ =(ypx) N 2[dyyz te¥ =n 21“(5) =n 2 -5
(T, ) =
pex A3 (T) ng/z
g3/2(A) = Z;‘le =7 ponIogarlthm|c function convergentforA < 1

g32(1) = Z,‘f:l# = G) = 2.612 Riemann zeta function

Pex (T, A) = 9gs3/2 @

A (T)
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Bose-Einstein condensation (p, T, V)

Total density as a mixture of the density in the ground state and the density of particles in the excited states

141
Vi1 a9

p(T,A) = (D) = po(T) + pex(T, 1)

Critical T,: all the particles are in the excited state p = A(T,.)™3( (%) =A3(T.)g3/2(1)

The temperature at which the excess particle density p,, reaches its maximum

- T<T.(A=1)

At T,, total density of particles is in the excited states p = A(T ;)3 (%) 1.5 o1
"o
BelowT,, only small fraction of particles are in the excited states p,,(T) = A(T)™3¢ G) =018
1
Hence, the fraction of bosons in the ground state
3/2
Po _ 1 _ Pex(T) _ 1 _ 23(T0) _ 1_(1)/ 05
p p A3(T) Tc
A macroscopic fraction of particles condense into the ground state with the zero momentum
O !
c T>T.(1<1) 0 1 2 3
T/T
Po c

1
— = 0, P = Pex = Ag—(T)gs/z(/U
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Average energy

3 3
U(T,u,V) = 1 m? ood 2
( uui )_\/27'[2 hgjo Eeﬁ(e_li)—l
3
U=)<1 EkTA?’(T) 95/2(/1)

3
U=2NkT p A3 (1) gs,,(A)

-« T<T,

Using that the total density determine the critical temperature
p= A3(T)I(3/2),
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U ==NkT ( ) 2
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Heat capacity

Heat capacity

C,(T) = (g—?)
T<T,(A=1)

3 r\3/2¢(3) 3 s 32 g(d)
U—ENkT(T—C) TE)AJTZ—)CV :Nk( ) 2

T>T,(A<1): p=A3(T)gs(A)
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Equation of state

P 1
— =——log(1—-1) —

T T A3(T)\/—j dxx210g(1 Ae™)

An
=1<1 —;log(l - 1)+ A3(T) Zn=1ﬁ

1 1 Pe
= A3(T) 95/2(}{) - ;log(l - A)
1

T<T.(1=1)

P —
kT  A3(T)

5
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Equation of state T > T,

L Clog(l =) — zjood bl 20
kT_ V 08 A3(T)\/E . X x21og e
1 1 0 An
=11~y logl =)+ A3(T) Yn=1,57
1 1
= A3(T) 95/2(/1) — ;log(l — A)
1
~ AS(T)QS/Z(A)
r> Tc(/1 <1)
p 1

— T
KT~ A3(T) Ys/2 (A, 1 = eBulpT)



Classical limit: Chemical potential for T > T,

The chemical potential is determined perturbatively from the density equation aboveT,.

p = A%(T)gs/z D) -p A3(T) Z n3/2 A3 (T ) ( ) A3(T) Z n3/2

3 T\ A 5
—_ e —_— J— e H‘
Q-@" S s
n=1 o
Inverting the equation above we can determine the fugacity A(p, T): a1l
3\ [T\ */? —02}
M14+273204.) = (—) (—) , :
( )=¢ 2/ \T, 03}
In the zeroth order, we recover the fugacity of the classical ideal gas 5 —04r
3 3 = —(Q5
0~ Q)E) e Q) T o)
~ S | j— - U = S — —LL
VAV H "¢ G)\T o
—(L7r
Including the first correction to the classical [imit 08}
3 3 04+t E ]
Q@ @) ? '
=~ —_ e —_ —_ —_— e d —l L 1 L
2/ \T, 2/ \T, (} 1 2

T/Te
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Equation of state for T > T,

P_ 1 ~ L 222 4 ...
KT ~ A3(T)‘95/3()L) ~ A3(T) (/1+2 A+ )

Using the expansion of the fugacity A = pA3(T) (1 — 2‘3/2pA3(T))

p
kT ~

This looks like a virial expansion of the equation of state

(p = 2_%pA3 (T) + Z_gp/\3 (T))

~ _I_ 1 2+ooo
kT p BZ( )p )

With the second virial term

(L o T NA3ry = 1 A3
BZ(T)—( 2ﬁ+4ﬁ)A(T)— —=A3(T) < 0

The Bose gas pressure is effectively lowered by statistical
attraction forces

P/KT




Bose Einstein condensation as a phase transition

Classical ideal gas is reached is in the limit of very small density

Pressure deviates from the classical law increasing the bose gas
density

At the critical point for the Bose-Einstein condensation (BEC), the Pe
gas density and the gas pressure have specific critical values

Below the BEC, the gas pressure becomes independent of density. P |

This is analogous to the liquid-gas phase transition, whereby the

pressure becomes independent of the volume SR
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