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Ideal Bose gas
Bose Einstein Condensation
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Bose-Einstein statistics
Generic system of ! = ∑$ %$ free bosons with occupation number %$ = 0,1,2⋯ corresponding to energy state +$
A microstate (-., !.) is described by a specific distribution of bosons over the energy states
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Grand-canonical partition function: unconditioned weighted sum over all microstates, i.e. over all particle distributions {%$}
corresponding to energy levels {+$}
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Landau free energy:
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ln 1 − 9:; <8:= = F4 ∫ J+K<(+) ln 1 − 9
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Density of states K<(+)- number of quantum states per energy interval
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Bose-Einstein gas: Thermodynamic properties
Average number of particles:
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Average energy:
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Pressure: Ω = 3 − 56 − 7! = −89
89 = −:5#
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log 1 − &*' ()*+ = −:5∫ ./0((/) ln 1 − &*' (*+
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Ideal Bose gas: Density of states in 3D 
Ideal	gas	of Bose atoms	(interactions between atoms	are negligible)

• Energy levels for a particle in a box with periodic boundary conditions:
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• Quantum state of the particle is described by its wavefunction DE =
F
:GH
I 7⋅L⃗, which is determined by ?

Number of available states between modes with ? and	? + N? in	3D
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Ideal Bose gases: Density of states in 2D
• Energy levels for particles on a flat domain with area A = #$:
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The quantum state is given by -. = /
(01
2 &⋅5⃗, with , = (,7, ,9)

Number of quantum states between modes with , and	, + @,:
B , @, = 2D,@,

Density of states corresponding to energy %,	is	then

BJ
($K) % = B ,

@,
@% → BJ

($K) % =
MN
2 Dℏ$

In 2D, the density of states is independent of energy

5Fys4130, 2019

,9

,7



Fys4130, 2019 6

3D 2D

Notice that !" # $ # = &' "
() '*+ ,- approaches zero for small # in 3D. This is not the case in 2D and 1D.  

Prediction for the 3D ideal Bose gas: 
Bose Einstein Condensation of particles in the ground state at sufficiently low temperatures



Ideal Bose gas: average gas density
Let us have a look at the average number of particles in 3D:
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Bose gas density: 456(1, 8) =
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approaches its maximum value as J → 1 (1 ↗ 0)
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Critical average gas density !" #
!$% &, # = Λ*+ # , & , 1

!$% &, # approaches its maximum value as & → 1 (0 ↗ 0)

For fixed T,  the density !$% increases by adding particles into the system. As the density !$%
increases, the chemical potential 0 also increases according to Eq. (1). But, 0 can increase up to its
maximum value 0 = 0 corresponding to a maximal (critical) density
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Average density in the ground state
!"# $, & = Λ)* & + $ ,

!"# $, & saturates at !, & = Λ)* & - *
. when $ → 1 (6 ↗ 0)

Q: What happens to all the particles added to this system beyond ρ; T density? 
A: Particles populate the ground state. This is not accounted for in the integral because of the
density of states D ϵ ∼ @ →A→B 0

Corrected particle density: 
The total number of particles is composed of a mixture of particles in the ground
state with density CD and particles in the excited states with an excess density CEF
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Bose-Einstein condensation at !"
At		a	given	temperature T,	density 5 and	chemical potential : are related by	the following equation

5 !, : =
1

A

1

BCD − 1
+ 5GH !, : = 5I(!, :) + 5GH(!, :)

However, at and below the critical temperature !", the density ceases to be a function of :, since : = 0

At the critical point, the total density 5 is determined by the maximum excess density

M NO = MPQ
RSQ NO, T = U = VCW NO X

W

Y

(Notice: the ground state density at the critical point is actually zero)
Below NO :

A macroscopic fraction of particles condense into the ground state with the zero momentum
• Chemical potential T = U remains zero for all temperatures below NO

• Excess density depends only on temperature and actually decreases with decreasing temperature
• Ground state density becomes non-zero and increases with decreasing temperature

Condensation in the momentum space means that particles becomes delocalized in space
Critical temperature for Bose Einstein condensation: 
Determined by the density of the bose gas

NO(M) =
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Excess density !"#
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Bose-Einstein condensation (!, #, $)
Total	density as	a	mixture of the density in	the ground state and	the density of particles in	the excited states
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Critical IJ:   all the particles are in the excited state K = L IJ MNO
N

P
= LMN IJ QN/P(R)

The	temperature at	which the excess particle density !GH reaches its maximum

• # ≤ #U(: = 1)

At		#U,		total	density of particles is	in	the excited states K = L IJ MNO N

P

Below #U,		only small fraction of particles are in	the excited states !GH # = Λ # M@X @

E

Hence,  the fraction of bosons in the ground state
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A macroscopic fraction of particles condense into the ground state with the zero momentum

• # > #U(: < 1)
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Average energy
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Using	that the	total	density	determine	the	critical	temperature	
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Heat capacity
Heat	capacity
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Equation of state
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Equation of state ! > !#
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Classical limit:  Chemical potential for ! ≫ !#
The	chemical potential is	determined perturbatively from	the density equation above !#.	
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Inverting the equation above we can determine the fugacity D(;, !):
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In	the zeroth order,	we recover the fugacity	of the classical ideal	gas
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Equation of state for ! ≫ !#
$
%& =

(
)* & +,/. / ≈ (

)* & / + 23
4
5/6 + ⋯

Using the expansion of the fugacity / ≈ 8Λ. ! 1 − 23./68Λ. !
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This looks like a virial expansion of the equation of state
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With the second virial term 
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The Bose gas pressure is effectively lowered by statistical
attraction forces
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Bose Einstein condensation as a phase transition

• Classical ideal gas is reached is in the limit of very small density

• Pressure deviates from the classical law increasing the bose gas 
density

• At the critical point for the Bose-Einstein condensation (BEC), the
gas density and the gas pressure have specific critical values

• Below the BEC, the gas pressure becomes independent of density.

• This is analogous to the liquid-gas phase transition, whereby the
pressure becomes independent of the volume
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