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Bose Einstein condensation



Bose-Einstein condensation

At a given temperature T density p and chemical potential u are related by the following equation
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Critical temperature for Bose Einstein condensation:
Determined by the density of the bose gas when yu = 0
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» T < T. Densityisamixture of condensed and normal gas
P =po+pex = A (T)S(3/2)
Below T, :
A macroscopic fraction of particles condense into the ground state with the zero momentum
*  Chemical potential u = 0 remains zero for all temperatures below T .
*  Excess density depends only on temperature and actually decreases with decreasing temperature
* Ground state density becomes non-zero and increases with decreasing temperature
Condensation in the momentum space means that particles becomes delocalized in space

» T >T,. Density is that of the normal gas

P(T, 1) = pex (T, ) = A73(T)g3(A)
2
This equation determines the chemical potential u(T, p)
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Equation of state
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The pressure becomes independent of density belowT,
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Equation of state T > T,
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Classical limit: Chemical potential for T > T,

The chemical potential is determined perturbatively from the density equation aboveT,.
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Equation of state for T > T,

P_ 1 ~ L 222 4 ...
KT ~ A3(T)‘95/3()L) ~ A3(T) (/1+2 A+ )

Using the expansion of the fugacity A = pA3(T) (1 — 2‘3/2pA3(T))

p
kT ~

This looks like a virial expansion of the equation of state

(p = 2_%pA3 (T) + Z_gp/\3 (T))
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With the second virial term

(L o T NA3ry = 1 A3
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The Bose gas pressure is effectively lowered by statistical
attraction forces

P/KT




Bose Einstein condensation as a phase transition

Classical ideal gas is reached is in the limit of very small density

Pressure deviates from the classical law increasing the bose gas
density

At the critical point for the Bose-Einstein condensation (BEC), the

gas density and the gas pressure have specific critical values Pe

Below the BEC, the gas pressure becomes independent of density.

This is analogous to the liquid-gas phase transition, whereby the
pressure becomes independent of the volume




ldeal Bose gases: Density of states in 2D

* Energy levels for particles on a flat domain of finite area A = L?:

. = 72 (Zn)znz
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The quantum state is given by = e L ", withnn = (n,,n
1 x» Ity

Number of quantum states between modes with n and n + dn:
D(n)dn = 2mndn
Density of states corresponding to energy ¢, is then

dn Am
De(€) = D(n)— = D(€) = 57—

In 2D, the density of states is independent of energy




Average density and chemical potential

* In 2D:
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Hence, the chemical potential as a function of density,
u@PX(T, p) = kTlog(1—e™P*7NM) <y,
will never become zeroforT > 0andp > 0

This means: no Bose-Einstein condensation is expected for the ideal Bose gas in two
dimensions!



Experimental realization: superfluid liquid He4

Transition to a superfluid He4 happens at a critical temperature P ( Jl K)
T, = 2.17K. ol
The ideal Bose gas prediction for the He* atoms is T, = 3.13K. He II He
Details are however different, because the interaction potential is 20
fairly strong, and not negligible as assumed in the ideal Bose gas. k_/
Superfluid He4 has a non-uniform density (higher density at the 1
bottom of the container); ideal Bose gas predicts constant density . :
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Experimental realization: atomic gases

* Using laser cooling techniues, it has been possible to cool
atomic gases, e.g. Rubidium atoms in a magnetic trap (“box”)
to ultra-cold (nanoKelvin) temperatures.

 BEC in atomic gases was first observed in 1995 and the Nobel
prize for this followed in 2001

The Nobel Prize in Physics 2001
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Eric A. Cornell  Carl E. Wieman Wolfgang Ketterle
Prize share: 1/3  Prize share: 1/3  Prize share: 1/3

The Nobel Prize in Physics 2001 was awarded jointly to Eric A. Cornell, Wolfgang
Ketterle and Carl E. Wieman "for the achievement of Bose-Einstein condensation
in dilute gases of alkali atoms, and for early fundamental studies of the
properties of the condensates”.

(Nobel Lecture)

https://www.youtube.com/watch?v=NoO7XKVmZC8

Observation of Bose-Einstein Condensation
in a Dilute Atomic Vapor

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,*
E. A. Cornell

A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was
confined by magnetic fields and evaporatively cooled. The condensate fraction first
appeared near a temperature of 170 nanokelvin and a number density of 2.5 X 10'2 per
cubic centimeter and could be preserved for more than 15 seconds. Three primary
signatures of Bose-Einstein condensation were seen. (i) On top of a broad thermal velocity
distribution, a narrow peak appeared that was centered at zero velocity. (i) The fraction
of the atoms that were in this low-velocity peak increased abruptly as the sample tem-
perature was lowered. (iii) The peak exhibited a nonthermal, anisotropic velocity distri-
bution expected of the minimum-energy quantum state of the magnetic trap in contrast
to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
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https://www.youtube.com/watch?v=NoO7XKVmZC8

Weakly-interacting atomic Bose gas at OK
Gross-Pitaevskii theory

The Bose gas of condensed bosons at T = 0K is described by the condensate
wavefunction Wy (ry, - y)

* Weak interactions in the form of 2-body collisions and short-range repulsion
* Spacially inhomogeneous gas density due to a trapping potential

N v2
ﬁN=2<—%+2wr> Zz:zch(rl—r ,
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The dynamics of the Bose Einstein condensate is described by the Schrodinger
equation for Wy

ihatLPN — I:I\Nl'IJN



Mean field approximation

Mean field approximation: all particles are described by the same wavefunction in the ground state

Y(r)

Condensate wavefunction is determined by 1-wavefunction ¥ (7°) in the ground state (macroscopic
wavefunction),

Wy, 7)) = 1)) @ () @ [P(ry))
Wy (ry ) = | [waro

l
_C()jne parlticle probability distributions P(r;) = ¥*(r;)y(r;) are independent and
identical.

Rescale the 1-particle wavefunction Y (r) = %qb(r), such that [ dr |¢p(r)|? = N



Gross-Pitaevskii equation

Average energy of a condensate particle
7 * hz 2 1 2.2 2 g 4
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Evolution of the macroscopic wavefunction ¢(r,t)
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Vortex dynamics in stirred BEC
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https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.032106
A. Skaugen, LA, PRE 93 (2016)
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Appendix:
derivation of BEC coarsegrained energy energy () = (WN|ﬁ|WN)

Density of particles:

n(r) = (Py
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BEC coarsegrained energy energy

Trapping potential:
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Time evolution

Interaction potential
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