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Bose-Einstein condensation
At		a	given	temperature T,	density 3 and	chemical potential 8 are related by	the following equation
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Critical temperature for Bose Einstein condensation: 
Determined by the density of the bose gas when 8 = 0
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• Y ≤ YZ: Density is	a	mixture of condensed and	normal	gas	
3 = 3K + 3TQ = ΛBG =g h(3/2)

Below YZ :
A macroscopic fraction of particles condense into the ground state with the zero momentum
• Chemical potential k = l remains zero for all temperatures below YZ
• Excess density depends only on temperature and actually decreases with decreasing temperature

• Ground state density becomes non-zero and increases with decreasing temperature

Condensation in the momentum space means that particles becomes delocalized in space
• Y > YZ: Density is		that of the normal	gas		

3(=, 8) = 3TQ(=, 8) = ΛBG = UG
O
A

This equation determines the chemical potential k(Y, [)
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Equation of state
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The	pressure becomes independent of density below #M
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Equation of state ! > !#
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Classical limit:  Chemical potential for ! ≫ !#
The	chemical potential is	determined perturbatively from	the density equation above !#.	
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Inverting the equation above we can determine the fugacity D(;, !):
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In	the zeroth order,	we recover the fugacity	of the classical ideal	gas
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Including the first	correction to	the classical limit		
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Equation of state for ! ≫ !#
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Using the expansion of the fugacity / ≈ 8Λ. ! 1 − 23./68Λ. !
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This looks like a virial expansion of the equation of state
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With the second virial term 
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The Bose gas pressure is effectively lowered by statistical
attraction forces
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Bose Einstein condensation as a phase transition
• Classical ideal gas is reached is in the limit of very small density

• Pressure deviates from the classical law increasing the bose gas 
density

• At the critical point for the Bose-Einstein condensation (BEC), the
gas density and the gas pressure have specific critical values

• Below the BEC, the gas pressure becomes independent of density.

• This is analogous to the liquid-gas phase transition, whereby the
pressure becomes independent of the volume
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Ideal Bose gases: Density of states in 2D
• Energy levels for particles on a flat domain of finite area A = #$:
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The quantum state is given by -. = /
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Number of quantum states between modes with , and	, + @,:
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Density of states corresponding to energy %,	is	then
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In 2D, the density of states is independent of energy
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Average density and chemical potential
• In 2D:
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Hence, the chemical potential as a function of density,  
& #$ ((, !) = :( log 1 − 47A

BC DB E < 0,
will never become zero for ( > 0 and ! > 0

This means: no Bose-Einstein condensation is expected for the ideal Bose gas in two
dimensions!
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Experimental realization: superfluid liquid He4 
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• Transition to a superfluid He4 happens at a critical temperature
!" = 2.17(. 

• The ideal Bose gas prediction for the He+ atoms is !" = 3.13(. 
• Details are however different, because the interaction potential is 

fairly strong, and not negligible as assumed in the ideal Bose gas. 
• Superfluid He4 has a non-uniform density (higher density at the

bottom of the container); ideal Bose gas predicts constant density
everywhere



Experimental realization: atomic gases
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• Using laser cooling techniues, it has been possible to cool 
atomic gases , e.g.  Rubidium atoms in a magnetic trap (“box”) 
to ultra-cold (nanoKelvin) temperatures. 

• BEC in atomic gases was first  observed in 1995 and the Nobel 
prize for this followed in 2001 

Eric A. Cornell
Prize share: 1/3

Wolfgang Ketterle
Prize share: 1/3

Carl E. Wieman
Prize share: 1/3

The Nobel Prize in Physics 2001

The Nobel Prize in Physics 2001 was awarded jointly to Eric A. Cornell, Wolfgang 
Ketterle and Carl E. Wieman "for the achievement of Bose-Einstein condensation
in dilute gases of alkali atoms, and for early fundamental studies of the
properties of the condensates". 
(Nobel Lecture )
https://www.youtube.com/watch?v=NoO7XKVmZC8

https://www.youtube.com/watch?v=NoO7XKVmZC8


Weakly-interacting atomic Bose gas at 0K
Gross-Pitaevskii theory

The Bose gas of condensed bosons at ! = 0$ is described by the condensate
wavefunction Ψ& '(,⋯'+

• Weak interactions in	the form	of 2-body	collisions and	short-range	repulsion
• Spacially inhomogeneous gas	density due	to	a	trapping	potential
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The	dynamics of the Bose Einstein	condensate is	described by	the Schrödinger
equation for		Ψ&

]ℏ_`Ψ& = EF&Ψ&
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Mean field approximation
Mean field approximation: all particles are described by the same wavefunction in the ground state
! "

Condensate wavefunction is determined by 1-wavefunction ! " in the ground state (macroscopic
wavefunction), 

Ψ$ "%,⋯"( = * "% ⊗ * ", ⋯⊗ * "$

Ψ$ "%,⋯"( =-
.
* ".

One particle probability distributions  P r1 = *∗ ". * ". are independent and 
identical.

Rescale the 1-particle wavefunction * 3 = %
$4 3 , such that ∫ 63 4 3 , = N
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Gross-Pitaevskii equation
Average energy of a condensate particle
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Evolution of the macroscopic wavefunction 8(:, <)
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Vortex dynamics in stirred BEC
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https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.032106
A. Skaugen, LA, PRE 93 (2016)
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Appendix: 
derivation of BEC coarsegrained energy energy Ω = #$ %& #$

Density of particles:
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BEC coarsegrained energy energy
Trapping potential:
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!" #ℏ%& !" = !" () !"
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