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|deal Fermi gas



ldeal Fermi gases: Themodynamic properties

e Pressure:

PV = kT j de D(€)In(1 + e FlE-W)
0

* Average number of particles:

Oo 1
W)V, = | D@ gy -
(N)

V= p(T, 1) is an indirect equation for finding the chemical potential u(p, T)

* Average energy:

BTV, = [ deD© gy -

0(E)

Heat capacity Cy(T) = (a_T)VN



ldeal Fermi gases: Density of states in 3D

. nZ
27l

e W, (r)=eL"" 1-particle wave function

o n= nxT+ n,l,j-— n k
* Each fermion (i.e. electron) has a spin moment = + > A )
- - -“..'-,_‘ y

* Energy levels a fermion in a box V = L3 with periodic boundary conditions:

e =1 (271')2 2
nTom\L ’

Number of available states between a mode with n between n and n + dn: D(n)dn = 2x4nn?dn

Z:=2><f dn 4nn? = [ dn D(n)

n
Density of states corresponding to energy e:
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d %4
D(e) =DMz > D(6) =2

The difference with respect to the density of states of bosons is the spin degeneracy of the energy levels (hence the extra factor of 2).
Different conventions: Sometimes the spin degeneneracy is not included in the density of states, and appears separately on the integral expressions
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Pressure and average energy
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The same relationship between energy density and pressure holds for the ideal bose gas
General expression for non-relativistic quantum ideal gas (independent of (n)(€) )



Fermi distribution at T=0 K

f(e)

1
- 1 1, e<u
f(e) = eBle—wyy T-0 {O, E>U

er = U Fermi energy level below which all states are occupied
€
(degenerate gas— degenerate ground state)

Determined by the gas density. € = €x(p)




Fermi energy at T=0 K
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ep = kTp » Tr = ﬁ(anp)B Fermi temperature
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Average energy at 1=0 K

(E)o h? )
V - 102 m?2 (3m%p)3

Average kinetic energy of the Fermi gas is nonzero even at T = 0K

In a Fermi gas, the fermi particles must occupy excited states even at T = 0K due to
the Pauli exclusion principle



Exclusion Pressure at T=0 K

* Determined directly from the energy density

(E)o 3 2
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_ 2 \3
~ 107m2m? (3m7p)3

hZ

5
~ 15m2m?2 (3m%p)z > 0

Po

Quantum pressure of a fermi gas: it keeps degenerate starts (T < Ty) from
collapsing under the gravitational pull



Denenerate ideal Fermigas T < Ty

The Fermi temperature is most often much larges than the gas temperature

Therefore, even though the fermi gas is at finite temperature, it behaves as if it was a near zero temperature whenT < Tg

3
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F(a) = jo deetf(e) = ———5 0 de e f'(€) = a—-l-ljo ae (eBle=m) 4 1)2

f'(€) is peaked arounde = pu > 0

(u + kTx)%+1e*
(e* + 1)?

1 ® L i
F(a) = a+1 _wde € f'(€) =x=p(e-w a+1 j_oodx
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Denenerate ideal Fermigas T < Ty

Sommerfeld expansion: P«

U
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Denenerate ideal Fermigas T < Ty

Sommerfeld expansion: kM—T <1

a+1 2 kT 2
F(a)=5+1<1+%a(a+1)(7) +>

Applying this expansion to density and mean energy

3
1 (2m)? | w2 (kT\*
- /2
P=3m2 s H (1+8(u)+

3
(E) 1 (2m)2 452 <1 . 5172 (kT)2 .

V 512 A3 3



Denenerate ideal Fermi gas: chemical potential u

Sommerfeld expansion: % K1

3
1 2m)z | 2 (kT\
— /2
P=3p2 3 * (1+8<u)+

3/2 3
Using that p = 3;2 (zm) €7




Denenerate ideal Fermi gas: chemical potential u

Sommerfeld expansion: % K1
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Denenerate ideal Fermi gas: average energy

Sommerfeld expansion: % <1
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Denenerate ideal Fermi gas: heat capacity

Sommerfeld expansion: %T <1
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C —1(N) 2kT
v M

Degenerate electron gas in most metals has a Fermi temperature Trp = E—}f ~ 10*K is
much larger than the room temperature
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Figure 5.20: The specific heat Cy /T of a solid as function of T2 has an intercept determined
by the electrons and a slope determined by the phonons. This specific heat is measured for
Chromium and Magnesium by S. A. Friedberg, I. Estermann, and J. E. Goldman 1951.
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Denenerate ideal Fermi gas: pressure

kT

Sommerfeld expansion: m K1
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High temperature limit (classical ideal gas): T > Tx

Pressure equation of state:

p_ 1 (2m)3/? ood €Z L oBl <1
372 B3 j A lePe+1’ e s

3
P AT 8 j"od X2 B
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Similarily, we can write the density equation with a dimensionless integral form

1
\/zm3/zjoo 67

"R ), e v

p

1
X2
A~ lex + 1

4 (00]
p(T,A) = A=3(T) \/_E,[ dx
0



Density and chemical potential: T > Tr

The density equation determines the chemical potential as a function of tempera ture and density

=A"3 — ePu
p(T,A) = A>(T)— ,[dx/llx+1 A=ePlt <1
Taylor expand the integrand with respect to the fugacity as the expansion parameter A < 1
_ A-3 4 0 1 _ _
p(T,2) = A3(T) = [ dx Axze ™ (1 — 2e™* + )
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Invert the series expansion to find the fugacity in terms of density:

3
A(T) = LZT)/) [1 + 2_%A3(T)p — ]



High temperature limit of pressure: T > Tg

In the high T limit, the pressure can be written as a virial expansion with respect to density dependency.

Expand the pressure in powers of fugacity:

= A3(T | A d Je—* Al d ) 2x 4
=A™ _ To—X Zo~
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Inserting the dependence of fugacity on density and keeping only the first two terms:
3
AT) =28 [14 275203 p — -]

P _7 _7
Z=p (14272083(T)p), By(T) =27203(T) >0

The positive second virial coefficient means that pressure is larger than the ideal gas pressure due to statistical repelling forces



Fquation of state for guantum gases: high T

7
Ptermions = kTp (1 + 2 ZABP)

Pposons = kTp (1 o Z_EASP)

Nonzero second virial coeff. B,(T) + 0

Bosons: B,(T) < 0 statistical attraction
Fermions: B,(T) > 0 statistical repulsion



Example of degerate Fermi gas:

Degenerate dwarf

Consider dwarf start of radius R and mass M = Ms,,,, (dominated by nucleons)

. 3M
mass density p =

=3 is very high (like Sun’s mass collapsed within Earth’s volume).

Density of electrons 1., ~ £~ ~ 103° cm™3, m,,= nucleon mass
e ™ n M

The corresponding Fermi temperature is
hZ
2mek

2
Tr = (3m%n,)3 ~ 4.3x10°K > 107K, the typical dwarf T

T < Tr regime where the electron gas is degenerate; we can neglect finite temperatyre
corrections and treat the fermi gas as if it were at OK



Degenerate pressure of a dwart

Suppose the electrons are non-relativisitic, then the pressure (assumed uniform) is
C2(E) 2 (2m)? s

P = —— =
e =37y T 1sp2 a3 °F
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3h? M 3
3 3
P, = (91)2 (— ) R~
20mTm, mpy

This quantum pressure has to balance the gravitational inwards pressure



Gravitational pressure

gravitational inwards pressure

b dU,  dUgdR 1 dU,
9 9V dRdV  4nR? dR
o . 3 GM
The gravitational potential is U, = -t
3GM?




Size of a dwarf star

T < Tr regime where the electron gas is degenerate and we can neglect high T
corrections

Equilibrium size of a dwarf

P, =P,
3G M3 3h? M 3
3 3
R™* = (91)2 (— ) R™® -
41t 20Tm, My
E 1

R=2(Z) —— (“)° ~ 5100 km (~ 6300 km for Earth)
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