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Ideal Fermi gases: Themodynamic properties
• Pressure:
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• Average number of particles:
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• Average energy:
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Ideal Fermi gases: Density of states in 3D
• Ψ"($) = '

()*
+ ,⋅$ 1-particle wave function

• Each fermion (i.e. electron) has a spin moment = ±"
/

• Energy levels a fermion in a box 0 = 12 with periodic boundary conditions:
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The difference with respect to the density of states of bosons is the spin degeneracy of the energy levels (hence the extra factor of 2).
Different conventions: Sometimes the spin degeneneracy is not included in the density of states, and appears separately on the integral expressions
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Pressure and average energy
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The same relationship between energy density and pressure holds for the ideal bose gas 
General expression for non-relativistic quantum ideal gas (independent of ⟨D⟩(0) ) 
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Fermi distribution at T=0 K

! " = $
%& '() *$ →,→- .1, " < 2

0, " > 2

"5 ≡ 2 Fermi energy level below which all states are occupied
(degenerate gas– degenerate ground state)

Determined by the gas density. "5 = "5(8)
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Fermi energy at T=0 K
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Average energy at T=0 K
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Average kinetic energy of the Fermi gas is nonzero even at T = 09
In a Fermi gas, the fermi particles must occupy excited states even at T = 09 due to 
the Pauli exclusion principle
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Exclusion Pressure at T=0 K
• Determined directly from	the energy density
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Quantum pressure of a fermi gas:  it keeps degenerate starts (D < DF) from 
collapsing under the gravitational pull 
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Denenerate ideal Fermi gas ! < !#
The	Fermi	temperature is	most	often much larges than the gas	temperature

Therefore,	even though the fermi gas	is	at	finite temperature,	it	behaves as	if it	was a	near zero	temperature when ! ≪ !#
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Denenerate ideal Fermi gas ! < !#
Sommerfeld	expansion:			45
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Denenerate ideal Fermi gas ! < !#
Sommerfeld	expansion:			

45
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Denenerate ideal Fermi gas: chemical potential !
Sommerfeld	expansion:			23
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Denenerate ideal Fermi gas: chemical potential !
Sommerfeld	expansion:			234 ≪ 1

78
9
: = !9/: 1 + >

:

8
@A
!

:
+⋯

! = 78 1 + >
:

8
@A
!

:
+⋯

C:/9

! = 78 1 − >
:

12
@A
78

:
+ ⋯

13Fys4130, 2019

A8 A

!

78



Denenerate ideal Fermi gas: average energy
Sommerfeld	expansion:			12
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Denenerate ideal Fermi gas: heat capacity
Sommerfeld	expansion:			12
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Degenerate electron gas	in	most	metals	has	a	Fermi	temperature		HC =
`a
1
∼ 10de is	

much larger than the room temperature
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Denenerate ideal Fermi gas: pressure
Sommerfeld	expansion:			12
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High temperature limit (classical ideal gas): ! > !#
Pressure	equation of state:
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Similarily,	we can write the density equation with a	dimensionless integral	form
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Density and chemical potential: ! > !#
The	density equation determines the chemical potential as	a	function of temperature and	density
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High temperature limit of pressure: ! > !#
In	the high T	limit,	the pressure can be	written as	a	virial expansion with respect to	density dependency.	

Expand the pressure in	powers of fugacity:
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Inserting the dependence of fugacity	on density and	keeping only the first	two terms:	
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The	positive	second virial coefficient means that pressure is	larger than the ideal	gas	pressure due	to	statistical repelling forces
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Equation of state for quantum gases: ℎ"#ℎ $

P&'()*+,- ≈ /$0 1 + 24
5
6Λ80

P9+-+:; ≈ /$0 1 − 24
=
6Λ80

Nonzero second virial coeff.		NO $ ≠ 0
Bosons: NO $ < 0 statistical attraction
Fermions: NO $ > 0 statistical repulsion
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Example of degerate Fermi gas:
Degenerate dwarf
Consider	dwarf start	of radius	R	and	mass 1 ≈ 1345 (dominated by	nucleons)	

mass density < =
>?

@ABC
is	very high (like	Sun’s mass collapsed within Earth’s volume).	

Density of	electrons	NO ≈
P

QR
≈ 10>U VWX>,W?=	nucleon mass

The	corresponding Fermi	temperature is	

\] =
ℏ_

`Qab
3d`NO

_
C ∼ 4.3×10hi ≫ 10ki,	the typical dwarf T

\ ≪ \] regime where the electron gas is degenerate;  we can neglect finite temperatyre
corrections and treat the fermi gas as if it were at 0K
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Degenerate pressure of a dwarf
Suppose the electrons are non-relativisitic, then the pressure (assumed uniform) is 
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This		quantum pressure has	to	balance the gravitational inwards pressure
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Gravitational pressure
gravitational inwards pressure
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Size of a dwarf star
! < !# regime where the electron gas is degenerate and we can neglect high T      
corrections

Equilibrium size of a	dwarf
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