Lecture 20

22.03.2018
Ideal quantum gases
Recap module IV



ldeal quantum gas

Consider a system of N = Zj n; fre. quantum particles with number n; of particles in each energy
state €;
J

Fermions: n; = 0,1
Bosons: n; = 0,12, -

Grand-canonical partition function:
Unconditioned sum weighted by the Gibbs factor over all microstates with {n;} partition of particles between

the energy levels {¢;},
(0/0)
= Z z o~ B Zj(ej=mn;

N=0 {n;}

= = 2 e B Ljej—mm; _ 1_[ 2 e~ Blej—m)n;
Jj nj

{n;}



Thermodynamic properties

Grand-canonical partition function:

=T 1 +1 | top sign: fermions
== 1l (1J_re_B(€f_”)) " [bottom sign: bosons

Landau free energy:
Q(T,V,u) = —PV = —kT log &

0= ¢sz log [1 + e‘ﬁ(ef_”)]
J

Zj = fooo de D.(e), D.(€) is the density of state in a unit energy interval and
determined by the system Hamiltonian and spacial dimension



Thermodynamics of ideal guantum gases
Pressure P(T, u)

PV = +kT[ deD(€) log(1 + e‘ﬁ(e_“)) (1)

Equation for the average number of particles provides the relationship between the density
p and chemical potential u:

1
(NYT,V, 1) = [ deD(€) 55— = [ de D()(n). (2)

Average energy:

(EXNT,V,u) = [ deD(e) = | de D(€){n).e (3)

eﬁ(e—ﬂ) + 1

For systems with non-zero u, we use Eq. (2) as the equation that determines u(p) and eliminate the u
dependence in Egs. (1) and (3), so that we can find the equation of state P(T, p) and the energy E(T, p)



Photons:

Light: traveling electromagnetic (EM) waves

* EM modes are described by

- . . . M 1 27-[
» wavevector k , which is restricted to discrete values k = - n

» frequency of an EM mode is w = C|E| = ck

Oscillation of the

~electromagnetic field

 EM mode has two transverse modes ° A g

- - - - E

k-E =0, k-B=0

B z
Photons: quanta of light E
* Each EM mode is populated by photons, each with a quanta of ——=>
Cc
energy: B

€ = hkc = hw
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Photon gas: uncountable photons u = 0

Grand-canonical partition function:
_ 1
== 1_[ 1 — e~ Bhck
1

Landau potential:

Bhc
Q(T,V) = =PV = kT z In(1 — e Ak) = kT [ dn D(n) In(1 - e_T")
n

Density of states

D(n)dn = 2x4nn?dn number of modes with quantum number between n and n+dn
D(n)dn = D, (k)dk = D, (w)dw = D.(€)e

v % v
C D) = LI, DY) = @, Dee) = e
Pressure: PV = —kT [ deD(¢) log(l — e‘ﬁe)
Average number of particles: (N) = [ de D(e){n). = [ deD(e) !

eBe—1
€
eBe—1

Average energy: (E) = [ de D(e){n).€ = [ deD(e)



Planck distribution:

Spectral energy distribution of a photon gas
Average energy density of a photon gas: 2

(EX(T,V) B 1fd D,(w)hw
v v YRR

T4-

h joo w3 mlk*

d =
n2c3 ), “ePho — 1~ 1503R3

Energy per unit volume at a given frequency w

<E7> = [ dw€E(w, T)

(1)3

€w,T) = m2c3 efrw — 1
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Radiation pressure and photon density

Equation of state
PV = —kT[ dwD(w)In(1 — e F) = —F(T,V) = —Q(T, V)

2

— 4
P= A5h3¢3 (kT)
P = {E) — (E) = 3PV
3V

General expression for relativistic free quantum particles

Density of photons at T:

(T)—<N>— 4 Jood o —(kT)3 L I—de X 2.404
PARUZY T n2cs 0 “epro —1~ \nc) w2’ >, T =174




Thermal vibrations in crystals

Harmonic solids: atoms in a crystal held at lattice sites by elastic
forces

ELLR
Lattice vibrations: sum of harmonic oscillators §

3N
H =50 0% + i) b

PPRIP PP @

PP P09 Pg0,04° &

P %P P P Peoe° P

. . kT 0@ PP oo @ py0e°
Virial theorem: U = 6N — = 3NkT 00 PLPP 09 P00
2 P O P0%%%°P 0 9 g0,°

PP PP P o9 @

Each mode is described as a quantum harmonic oscillator 56 e we®vsse
€, = hw B s
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Phonon gas: Debye model e e

Atoms vibrate with different frequencies and a linear dispersion g ; 2
w = kv, where v is the sound wave in the solid =
©

* Density of elastic modes is analogous to the density of states for photons
(in the long-wavelength approximation, continuum elastic medium) =
1T Re ATIA TEITAY SETIR
D()3Va)2dk3Va)2 for 0<w<
w)=3———=3——, or 0<w<=<w
@ 212 v2 dw 2m2 v3 b n,
 Total number of modes: 3N normal modes (in 3D) for N atoms Sl e n Tk
.f""“.r" “-r "’.i.:'.'“‘ y
“p vooep e
3N = dw D (CL)) =3 5.3 dw (1)2 ............ ;I.-:'.'.'f.:'.-:fi'.'.::.-:'.'fv..:_.-:i'.';;_.-.‘.'f'.'
2 l 1
1 N
Debye frequency wp = v (6n N)3 - Wp = S v(6m?p)3, p=—
v Amin v

o
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Debye model: heat capacity of crystals

* Total average energy of phonons

Wp hw Wp 2 hw
U(r,v) = jo dw D(w) oBhw _ 1 3k 2203 |, dw o oBhw _
* Heat capacity
U P 2 (Mo PP
Cy(T) = 3k d (—)
V(1) = (6T) 2m2v3 ), CENRT) @Pro D2,
T 3 TD 4 X
T) = 9N = F(y) =
Cv(T) = SNk (TD) (T) )= j PEr-D?
Cy(T) ~ 3Nk, T > Tp 3
12 T 3 10
5 TD 10

Law of Dulong and Petit

i b’ll-f_'.-:';rl— . Approaches

Dulong-Petit
at high tamp

Low temperature
T2 behavior matches
Debye model

lllllllll




|deal Bose gas: Density of states in 3D

* Energy levels for a particle in a box with periodic boundary conditions:

_hz 27'[2—)2_h2 27'[22 = .
n=om\z) M=\ T) % il = (e ny,nz), My, integers

2T
n-

 Quantum state of the particle is described by its wavefunction p; = eZ ", which is determined by 71

Number of available states between modes with nand n + dn in 3D
D(n)dn = 4nn?dn
174 m3/2 1

D.(e)de = D(n)dn — D.(¢€) = NN E €2
T

1
= fdeDE(e) A1

Average number of particles:  (N) = }; !
eﬁ(ej_u)—l

. — . € = €
Average energy: U=2; = [ deD.(¢) ICEm

Pressure: PV = —kT },;log (1 — e‘ﬁ(ef‘“)) = —kT[ deD.(€) ln[l — e‘ﬁ(e‘“)]
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Bose-Einstein condensation

At a given temperature T density p and chemical potential u are related by the following equation

N~

- +A‘3(T)2jood -
VAT -1 V7). Per—1

p(T, 1) = po(T, 1) + pex (T, 1) = A‘3(T)g%(l), A =ePH

Critical temperature for Bose Einstein condensation:

p(T,p) =

Determined by the density of the bose gas when yu = 0
2
hZ P \3
T.(p) = — (<)
c(P) 2mmk ((3)
2

» T < T. Densityisamixture of condensed and normal gas

—_ — -3
P = Po (T) + pex(T) = A (Tc)((B/Z)
A macroscopic fraction of particles condense into the ground state with the zero momentum
*  Chemical potential p = 0 remains zero for all temperatures below T .

* Excess density depends only on temperature and actually decreases with decreasing temperature

* Ground state density becomes non-zero and increases with decreasing temperature

Po_ Pax(D_ . NI _ (T)3/2

p p N(T)
» T >T,. Density is that of the normal gas

P(T, 1) = pex(T, 1) = A‘?’(T)g%(/l)

This equation determines the chemical potential u(T, p)

Tc
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Pressure

P 1
— =——log(1—A1) — 2]log(1 —Ae™
e 7 og(1—A1) A3 (T \/_f dxx og(1— e ™)
1
— AB(T) gS/Z(A)
c T<T, A1=1)
P 5
e — ~ [ 2
The pressure becomes independent of density below T,
c T>T, 1<1)
P(T,7) 1

= m@dse@® P =47Mgz)

\ 4



Chemical potential and equation of state for T > T,

» The chemical potential is determined perturbatively from the density equation aboveT,.

3

—oui-eed.
rmsrnls ) (-0

* Equation of state: elimite the chemical potential from

3 o 0 .
ot ) mm a0 - 55 o
PEBm Y T B¢ A3<T) T, 3w
n=1Mn2 03 E
Inverting the equation above we can determine the fugacity A(p, T): = —04}
< —05 !
3\ /Ty "3/? | |
1 2—3/2 e ) = <_> <_) , —06
A(1+ A+-)=¢ I\T _
() 1I 2

P 1
ﬁ = A3(T) 95/3(/1)

P 1
TP T B,(T)p* + -+, By(T) = —EAB(T) <0

The Bose gas pressure is effectively lowered by statistical attraction forces P



ldeal Fermi gases: Density of states in 3D

2T

« W, (r) =eL"" 1-particle wave function

- - - -
n=nxl+r|?]-rlzk

* Each fermion (i.e. electron) has a spin moment = +

N | =

. . . L K2 [(2m)>?
* Energy levels a fermion in a box V = L3 with periodic boundary conditions: €, = - (Tn) n?,

Number of available states between a mode with n between n and n + dn: D(n)dn = 2x4nn?dn

Z:zZXf dn 4mn? = [ dn D(n)

n
Density of states corresponding to energy e€:

d 14 3/2 1
D(e) =D(n) - > D(€) =2 —~—e

The difference with respect to the density of states of bosons is the spin degeneracy of the energy levels (hence the extra factor of 2).

Different conventions: Sometimes the spin degeneneracy is not included in the density of states, and appears separately on the integral
expressions
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Pressure and average energy

VZ m3/2
P=kT7T2 3 j de €Y% 1og(1 + e Fle~w)
3
Zx/fmzf e €2 Z(E)
32 h3 efle-) 1 3V

General expression for non-relativistic quantum ideal gas (independent of (n)(¢) )



Fermi distribution at T=0 K

1

fle) = oBle-wyq T—0

|

1, e<u
0, e>u

er = U Fermi energy level below which all states are occupied

2 2
Determined by the gas density €x(p) = j—m (3m%p)s3

Energy

Exclusion pressure

(E)o _ V2m3/?

p(er) =

V

w2 h3

3/2

=
372

2m
hZ) ¢

TN W

°F 3 1 /2m
JO de ez 5n2(h2

f(e)




Denenerate ideal Fermigas T < Ty

The Fermi temperature is most often much larges than the gas temperature

Therefore, even though the fermi gas is at finite temperature, it behaves as if it was a near zero temperature whenT < Tg

3 3
s m2 1 (E) \/ETI”LE 3
rwiE, 220
i h3 V w?hd \2
I
0 ﬁ 00 Ea+1eﬂ(e—u)
F(a) = “f (€) = ——
(a) jo de €?f (€) a1, de FeD T 1)
on: L1 - Yy P L2 R ;
Sommertfeld expansion. I 1. Fla) = — (1 +—ala+1) (u) + )

3
1 (2m)3? |, w2 (kT\?
- 214 — (=) + .-
P=3p2 3 H <1+8 (u) *

3
(Ey 1 (2m)?2 52 (kT
_ /2 O (RLY L
v s ow MU\ ( ) *

fle)

-f(€)




Denenerate ideal Fermi gas: chemical potential u

Sommerfeld expansion: ’L—T <1

3
1 (2m)? | 2 (kT\*
— /2
P=3m2 s H (1+8()+

. 1 [2m\3/2 >
Using that p = 3n2( ) -




Denenerate ideal Fermi gas: average energy

Sommerfeld expansion: P«

U .

B ) 2 (kT)2 .
H=er\ "7 12 &,

EY 1 (2m)z Sr? (kT ~
( )= ( ) M5/2(1+ T ( ) _|_> "

Figure 5.20: The specific heat Cy /T of a solid as function of T2 has an intercept determined
by the electrons and a slope determined by the phonons. This specific heat is measured for
Chromium and Magnesium by S. A. Friedberg, I. Estermann, and J. E. Goldman 1951.

1 1 L 1 1
< © a ) 3 =3

T ()




Denenerate ideal Fermi gas: pressure

kT

Sommerfeld expansion: m K1
(E) 1(2)E 52 (kT\* 3
-G (S ) )
vV 512 h3 F <1+12 &) T )_ZPV

P =P, (1 + 3 (RZ)Z + )



High temperature limit (classical ideal gas): T > Tx

Pressure equation of state:

p_ 1 (2m)3/? ood €Z L oBl <1
372 B3 j A lePe+1’ e s

3
P AT 8 j"od X2 B
=MD ) Yome gt x = Ppe

Similarily, we can write the density equation with a dimensionless integral form

1
\/zm3/zjoo 67

"R ), e v

p

1
X2
A~ lex + 1

4 (00]
p(T,A) = A=3(T) \/_E,[ dx
0



Density and chemical potential: T > Tr

The density equation determines the chemical potential as a function of tempera ture and density

_ A3 _
p(T,2) = A3(T)— jdx/11er1 A=ePr <1
Taylor expand the integrand with respect to the fugacity as the expansion parameter A < 1

00 1
p(T,A)=A‘3(T)if de Axze (1 — de~% + ---)
p= A‘3(T)—/1U dxxzex AJ dxxze 2x 4 .. ]

p= A-3(T) [—— 2‘5\/‘/1+ ]
p = 2A-3(T) A1 =273/ + .. ]

Invert the series expansion to find the fugacity in terms of density:

3
MT) =—— ()p |1+ 275/2A3p — -]



High temperature limit of pressure: T > Tg

In the high T limit, the pressure can be written as a virial expansion with respect to density dependency.

Expand the pressure in powers of fugacity:

= A3(T | A d Je—* Al d ) 2x 4
=A™ _ To—X Zo~
e ()3\/_ Uo X xzZe jo xXx2e ]

P ._3 8
F= AR5

= =

16\/—+ ]

P =2n3(mal1 - 270 + -]

Inserting the dependence of fugacity on density and keeping only the first two terms:
3
AT) =28 [14 275203 p — -]

P _7 _7
Z=p (14272083(T)p), By(T) =27203(T) >0

The positive second virial coefficient means that pressure is larger than the ideal gas pressure due to statistical repelling forces



Fquation of state for guantum gases: high T

7
Ptermions = kTp (1 + 2 ZABP)

Pposons = kTp (1 o Z_EASP)

Nonzero second virial coeff. B,(T) + 0

Bosons: B,(T) < 0 statistical attraction
Fermions: B,(T) > 0 statistical repulsion



