Lecture 20

22.03.2018
Ideal quantum gases
Recap module IV

Ideal quantum gas

Consider a system of $N=\sum_{j} n_{j}$ fre. quantum particles with number n_{j} of particles in each energy state ϵ_{j}

Fermions: $n_{j}=0,1$
Bosons: $\quad n_{j}=0,1,2, \ldots$

Grand-canonical partition function:

Unconditioned sum weighted by the Gibbs factor over all microstates with $\left\{n_{j}\right\}$ partition of particles between the energy levels $\left\{\epsilon_{j}\right\}$,

$$
\begin{gathered}
\Xi=\sum_{N=0}^{\infty} \sum_{\left\{n_{j}\right\}} e^{-\beta \sum_{j}\left(\epsilon_{j}-\mu\right) n_{j}} \\
\Xi=\sum_{\left\{n_{j}\right\}} e^{-\beta \sum_{j}\left(\epsilon_{j}-\mu\right) n_{j}}=\prod_{j} \sum_{n_{j}} e^{-\beta\left(\epsilon_{j}-\mu\right) n_{j}}
\end{gathered}
$$

Thermodynamic properties

Grand-canonical partition function:

$$
\Xi=\prod_{j}\left(\frac{1}{1 \pm e^{-\beta\left(\epsilon_{j}-\mu\right)}}\right)^{\mp 1},\left\{\begin{array}{l}
\text { top sign: fermions } \\
\text { bottom sign: bosons }
\end{array}\right.
$$

Landau free energy:

$$
\begin{aligned}
& \Omega(\mathrm{T}, \mathrm{~V}, \mu)=-P V=-k T \log \Xi \\
& \Omega=\mp k T \sum_{j} \log \left[1 \pm e^{-\beta\left(\epsilon_{j}-\mu\right)}\right]
\end{aligned}
$$

$\sum_{j} \equiv \int_{0}^{\infty} d \epsilon D_{\epsilon}(\epsilon), \quad D_{\epsilon}(\epsilon)$ is the density of state in a unit energy interval and determined by the system Hamiltonian and spacial dimension

Thermodynamics of ideal quantum gases

Pressure $P(T, \mu)$

$$
\begin{equation*}
P V= \pm k T \int d \epsilon D(\epsilon) \log \left(1 \pm e^{-\beta(\epsilon-\mu)}\right) \tag{1}
\end{equation*}
$$

Equation for the average number of particles provides the relationship between the density ρ and chemical potential μ :

$$
\begin{equation*}
\langle N\rangle(T, V, \mu)=\int d \epsilon D(\epsilon) \frac{1}{e^{\beta(\epsilon-\mu)} \pm 1}=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon} \tag{2}
\end{equation*}
$$

Average energy:

$$
\begin{equation*}
\langle E\rangle(T, V, \mu)=\int d \epsilon D(\epsilon) \frac{\epsilon}{e^{\beta(\epsilon-\mu)} \pm 1}=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon} \epsilon \tag{3}
\end{equation*}
$$

For systems with non-zero μ, we use Eq. (2) as the equation that determines $\mu(\rho)$ and eliminate the μ dependence in Eqs. (1) and (3), so that we can find the equation of state $P(T, \rho)$ and the energy $E(T, \rho)$

Photons:

Light: traveling electromagnetic (EM) waves

- EM modes are described by
$>$ wavevector \vec{k}, which is restricted to discrete values $\vec{k}=\frac{2 \pi}{L} \vec{n}$ $>$ frequency of an EM mode is $\omega=c|\vec{k}|=c k$

- EM mode has two transverse modes

$$
\vec{k} \cdot \vec{E}=\mathbf{0}, \quad \vec{k} \cdot \vec{B}=\mathbf{0}
$$

Photons: quanta of light

- Each EM mode is populated by photons, each with a quanta of energy:

$$
\epsilon=\hbar k c=\hbar \omega
$$

Photon gas: uncountable photons $\mu \equiv 0$

Grand-canonical partition function:

$$
\Xi=\prod_{\vec{n}} \frac{1}{1-e^{-\beta \hbar c k}}
$$

Landau potential:

$$
\Omega(\mathrm{T}, \mathrm{~V})=-P V=k T \sum_{\vec{n}} \ln \left(1-e^{-\beta \hbar c k}\right)=k T \int d n D(n) \ln \left(1-e^{-\frac{\beta h c}{L} n}\right)
$$

Density of states
$D(n) d n=2 \times 4 \pi n^{2} d n$ number of modes with quantum number between n and $\mathrm{n}+\mathrm{dn}$ $D(n) d n=D_{k}(k) d k=D_{\omega}(\omega) d \omega=D_{\epsilon}(\epsilon) \epsilon$

- $D_{k}(k)=\frac{V}{\pi^{2}} k^{2}, \quad D_{\omega}(\omega)=\frac{V}{\pi^{2} c^{3}} \omega^{2}, \quad D_{\epsilon}(\epsilon)=\frac{V}{\pi^{2} \hbar^{3} c^{3}} \epsilon^{2}$

Pressure: $\quad P V=-k T \int d \epsilon D(\epsilon) \log \left(1-e^{-\beta \epsilon}\right)$
Average number of particles: $\quad\langle N\rangle=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon}=\int d \epsilon D(\epsilon) \frac{1}{e^{\beta \epsilon-1}}$

$$
\text { Average energy: } \quad\langle E\rangle=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon} \epsilon=\int d \epsilon D(\epsilon) \frac{\epsilon}{e^{\beta \epsilon-1}}
$$

Planck distribution:

Spectral energy distribution of a photon gas

Average energy density of a photon gas:

$$
\begin{gathered}
\frac{\langle E\rangle(T, V)}{V}=\frac{1}{V} \int d \omega \frac{D_{\omega}(\omega) \hbar \omega}{e^{\beta \hbar \omega}-1} \\
=\frac{\hbar}{\pi^{2} c^{3}} \int_{0}^{\infty} d \omega \frac{\omega^{3}}{e^{\beta \hbar \omega}-1}=\frac{\pi^{2} k^{4}}{15 c^{3} \hbar^{3}} T^{4}
\end{gathered}
$$

Energy per unit volume at a given frequency ω

$$
\begin{aligned}
\frac{\langle E\rangle}{V} & =\int d \omega \varepsilon(\omega, T) \\
\varepsilon(\omega, T) & =\frac{\hbar}{\pi^{2} c^{3}} \frac{\omega^{3}}{e^{\beta \hbar \omega}-1}
\end{aligned}
$$

Radiation pressure and photon density

Equation of state

$$
\begin{gathered}
P V=-k T \int d \omega D(\omega) \ln \left(1-e^{-\beta \hbar \omega}\right)=-F(T, V)=-\Omega(T, V) \\
P=\frac{\pi^{2}}{45 \hbar^{3} c^{3}}(k T)^{4} \\
P=\frac{\langle E\rangle}{3 V} \rightarrow\langle\boldsymbol{E}\rangle=\mathbf{3 P V}
\end{gathered}
$$

General expression for relativistic free quantum particles

Density of photons at T :

$$
\rho(T)=\frac{\langle N\rangle}{\mathrm{V}}=\frac{V}{\pi^{2} c^{3}} \int_{0}^{\infty} d \omega \frac{\omega^{2}}{e^{\beta \hbar \omega}-1}=\left(\frac{k T}{\hbar c}\right)^{3} \frac{I_{2}}{\pi^{2}}, \quad I_{2}=\int_{0}^{\infty} d x \frac{x^{2}}{e^{x}-1} \approx 2.404
$$

Thermal vibrations in crystals

Harmonic solids: atoms in a crystal held at lattice sites by elastic forces

Lattice vibrations: sum of harmonic oscillators

$$
H=\frac{1}{2} \sum_{i=1}^{3 N}\left(p_{i}^{2}+\omega_{i}^{2} q_{i}^{2}\right)
$$

Virial theorem: $\mathrm{U}=6 \mathrm{~N} \frac{k T}{2}=3 N k T$
Each mode is described as a quantum harmonic oscillator

$$
\epsilon_{\omega}=\hbar \omega
$$

Phonon gas: Debye model

Atoms vibrate with different frequencies and a linear dispersion $\omega=k v$, where v is the sound wave in the solid

- Density of elastic modes is analogous to the density of states for photons
(in the long-wavelength approximation, continuum elastic medium)

$$
D_{\omega}(\omega)=3 \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{2}} \frac{d k}{d \omega}=3 \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{3}}, \quad \text { for } 0 \leq \omega \leq \omega_{D}
$$

- Total number of modes: 3 N normal modes (in 3D) for N atoms

$$
3 N=\int_{0}^{\omega_{D}} d \omega D(\omega)=3 \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2}
$$

Debye frequency $\omega_{D}=v\left(\frac{6 \pi^{2} N}{V}\right)^{\frac{1}{3}} \rightarrow \omega_{D}=\frac{2 \pi v}{\lambda_{\min }}=v\left(6 \pi^{2} \rho\right)^{\frac{1}{3}}, \quad \rho=\frac{N}{V}$

Debye model: heat capacity of crystals

- Total average energy of phonons

$$
U(T, V)=\int_{0}^{\omega_{D}} d \omega D(\omega) \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}=3 k \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2} \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}
$$

- Heat capacity

$$
\begin{gathered}
C_{V}(T)=\left(\frac{\partial U}{\partial T}\right)_{V}=3 k \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2}\left(\frac{\hbar \omega}{k T}\right)^{2} \frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}} \\
C_{V}(T)=9 N k\left(\frac{T}{T D}\right)^{3} F\left(\frac{T_{D}}{T}\right), \quad F(y)=\int_{0}^{y} d x \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} \\
C_{V}(\boldsymbol{T}) \approx \mathbf{3 N k}, \quad \boldsymbol{T} \gg \boldsymbol{T}_{\boldsymbol{D}} \\
C_{V}(T) \approx \frac{12}{5} N k \pi^{4}\left(\frac{T}{T_{D}}\right)^{3}, \quad \boldsymbol{T} \ll \boldsymbol{T}_{\boldsymbol{D}}
\end{gathered}
$$

Ideal Bose gas: Density of states in 3D

- Energy levels for a particle in a box with periodic boundary conditions:

$$
\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|\vec{n}|^{2}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2} n^{2}, \quad \vec{n}=\left(n_{x}, n_{y}, n_{z}\right), \quad n_{x, y, z} \text { integers }
$$

- Quantum state of the particle is described by its wavefunction $\psi_{1}=e^{\frac{2 \pi i}{L} \vec{n} \cdot \vec{r}}$, which is determined by \vec{n}

Number of available states between modes with n and $n+d n$ in $3 D$

$$
D(n) d n=4 \pi n^{2} d n
$$

$$
D_{\epsilon}(\epsilon) d \epsilon=D(n) d n \rightarrow D_{\epsilon}(\epsilon)=\frac{V}{\sqrt{2} \pi^{2}} \frac{m^{3 / 2}}{\hbar^{3}} \epsilon^{\frac{1}{2}}
$$

Average number of particles: $\quad\langle N\rangle=\sum_{j} \frac{1}{e^{\beta\left(\epsilon_{j}-\mu\right)_{-1}}}=\int d \epsilon D_{\epsilon}(\epsilon) \frac{1}{e^{\beta(\epsilon-\mu)-1}}$

Average energy: $\quad U=\sum_{j} \frac{\epsilon_{j}}{e^{\beta\left(\epsilon_{j}-\mu\right)_{-1}}}=\int d \epsilon D_{\epsilon}(\epsilon) \frac{\epsilon}{e^{\beta(\epsilon-\mu)-1}}$
Pressure: $\quad P V=-k T \sum_{j} \log \left(1-e^{-\beta\left(\epsilon_{j}-\mu\right)}\right)=-k T \int d \epsilon D_{\epsilon}(\epsilon) \ln \left[1-e^{-\beta(\epsilon-\mu)}\right]$

Bose-Einstein condensation

At a given temperature T, density ρ and chemical potential μ are related by the following equation

$$
\begin{gathered}
\rho(T, \mu)=\frac{1}{V} \frac{1}{\lambda^{-1}-1}+\Lambda^{-3}(T) \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} d x \frac{x^{\frac{1}{2}}}{e^{x}-1} \\
\rho(T, \mu)=\rho_{0}(T, \mu)+\rho_{e x}(T, \mu)=\Lambda^{-3}(T) g_{\frac{3}{2}}(\lambda), \quad \lambda=e^{\beta \mu}
\end{gathered}
$$

A macroscopic fraction of particles condense into the ground state with the zero momentum

- Chemical potential $\mu=0$ remains zero for all temperatures below T_{c}
- Excess density depends only on temperature and actually decreases with decreasing temperature
- Ground state density becomes non-zero and increases with decreasing temperature

$$
\frac{\rho_{0}}{\rho}=1-\frac{\rho_{e x}(T)}{\rho}=1-\frac{\Lambda^{3}\left(T_{c}\right)}{\Lambda^{3}(T)}=1-\left(\frac{T}{T_{c}}\right)^{3 / 2}
$$

- $T>T_{c}$: Density is that of the normal gas

$$
\rho(T, \mu)=\rho_{e x}(T, \mu)=\Lambda^{-3}(T) g_{\frac{3}{2}}(\lambda)
$$

This equation determines the chemical potential $\mu(T, \rho)$

Pressure

$$
\begin{aligned}
& \frac{P}{k T}=-\frac{1}{V} \log (1-\lambda)-\frac{1}{\Lambda^{3}(T)} \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} d x x^{\frac{1}{2}} \log \left(1-\lambda e^{-x}\right) \\
& =\frac{1}{\Lambda^{3}(T)} g_{5 / 2}(\lambda)
\end{aligned}
$$

- $T \leq T_{c} \quad(\lambda=1)$

$$
\frac{P}{k T}=\frac{1}{\Lambda^{3}(T)} g_{5 / 2}(1) \rightarrow P(T) \sim T^{\frac{5}{2}}
$$

The pressure becomes independent of density below T_{c}
$\begin{aligned} & \text { - } T>T_{c} \quad(\lambda<1) \\ & \frac{P(T, \lambda)}{k T}=\frac{1}{\Lambda^{3}(T)} g_{5 / 2}(\lambda), \quad \rho(T, \lambda)=\Lambda^{-3}(T) g_{\frac{3}{2}}(\lambda)\end{aligned}$

$$
\frac{P(T, \lambda)}{k T}=\frac{1}{\Lambda^{3}(T)} g_{5 / 2}(\lambda), \quad \rho(T, \lambda)=\Lambda^{-3}(T) g_{\frac{3}{2}}(\lambda)
$$

Chemical potential and equation of state for $T>T_{c}$

- The chemical potential is determined perturbatively from the density equation above T_{c}.

$$
\rho=\frac{1}{\Lambda^{3}(T)} g_{\frac{3}{2}}(\lambda) \rightarrow \frac{1}{\Lambda^{3}\left(T_{c}\right)} \zeta\left(\frac{3}{2}\right)=\frac{1}{\Lambda^{3}(T)} \sum_{n=1}^{\infty} \frac{\lambda^{n}}{n^{\frac{3}{2}}} \rightarrow \zeta\left(\frac{3}{2}\right)=\left(\frac{T}{T_{c}}\right)^{\frac{3}{2}} \sum_{n=1}^{\infty} \frac{\lambda^{n}}{n^{\frac{3}{2}}}
$$

Inverting the equation above we can determine the fugacity $\lambda(\rho, T)$:

$$
\begin{gathered}
\lambda\left(1+2^{-3 / 2} \lambda+\cdots\right)=\zeta\left(\frac{3}{2}\right)\left(\frac{T}{T_{c}}\right)^{-3 / 2}, \\
\lambda \approx \zeta\left(\frac{3}{2}\right)\left(\frac{T}{T_{c}}\right)^{-\frac{3}{2}}\left(1-\zeta\left(\frac{3}{2}\right)\left(\frac{2 T}{T_{c}}\right)^{-\frac{3}{2}}\right) \rightarrow \\
\mu=k T \ln \left[\zeta\left(\frac{3}{2}\right)\left(\frac{T}{T_{c}}\right)^{-\frac{3}{2}}\left(1-\zeta\left(\frac{3}{2}\right)\left(\frac{2 T}{T_{c}}\right)^{-\frac{3}{2}}\right)\right]
\end{gathered}
$$

- Equation of state: elimite the chemical potential from $\frac{P}{k T}=\frac{1}{\Lambda^{3}(T)} g_{5 / 3}(\lambda)$

$$
\frac{P}{k T} \approx \rho+B_{2}(T) \rho^{2}+\cdots, \quad B_{2}(T)=-\frac{1}{4 \sqrt{2}} \Lambda^{3}(T)<0
$$

The Bose gas pressure is effectively lowered by statistical attraction forces

Ideal Fermi gases: Density of states in 3D

- $\Psi_{1}(\boldsymbol{r})=e^{\frac{2 \pi i}{L} \boldsymbol{n} \cdot \boldsymbol{r}}$ 1-particle wave function
- Each fermion (i.e. electron) has a spin moment $= \pm \frac{1}{2}$
- Energy levels a fermion in a box $V=L^{3}$ with periodic boundary conditions: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2} n^{2}$,

Number of available states between a mode with n between n and $n+d n$: $D(n) d n=2 \times 4 \pi n^{2} d n$

$$
\sum_{n}:=2 \times \int d n 4 \pi n^{2}=\int d n D(n)
$$

Density of states corresponding to energy ϵ :

$$
D(\epsilon)=D(n) \frac{d n}{d \epsilon} \rightarrow D(\epsilon)=2 \frac{V}{\sqrt{2} \pi^{2}} \frac{m^{3 / 2}}{\hbar^{3}} \epsilon^{\frac{1}{2}}
$$

The difference with respect to the density of states of bosons is the spin degeneracy of the energy levels (hence the extra factor of 2). Different conventions: Sometimes the spin degeneneracy is not included in the density of states, and appears separately on the integral expressions

Pressure and average energy

$$
\begin{gathered}
P=k T \frac{\sqrt{2}}{\pi^{2}} \frac{m^{3 / 2}}{\hbar^{3}} \int_{0}^{\infty} d \epsilon \epsilon^{1 / 2} \log \left(1+e^{-\beta(\epsilon-\mu)}\right) \\
P=\frac{2}{3} \frac{\sqrt{2}}{\pi^{2}} \frac{m^{\frac{3}{2}}}{\hbar^{3}} \int_{0}^{\infty} d \epsilon \frac{\epsilon^{\frac{3}{2}}}{e^{\beta(\epsilon-\mu)}+1}=\frac{2}{3} \frac{\langle E\rangle}{V}
\end{gathered}
$$

General expression for non-relativistic quantum ideal gas (independent of $\langle n\rangle(\epsilon)$)

Fermi distribution at $\mathrm{T}=0 \mathrm{~K}$

$f(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}+1} \rightarrow_{T \rightarrow 0}\left\{\begin{array}{l}1, \epsilon<\mu \\ 0, \\ \epsilon>\mu\end{array}\right.$
$\epsilon_{F} \equiv \mu$ Fermi energy level below which all states are occupied
Determined by the gas density $\epsilon_{F}(\rho)=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \rho\right)^{\frac{2}{3}}$

$$
\rho\left(\epsilon_{F}\right)=\frac{1}{3 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon_{F}^{\frac{3}{2}}
$$

Energy

$$
\frac{\langle E\rangle_{0}}{V}=\frac{\sqrt{2}}{\pi^{2}} \frac{m^{3 / 2}}{\hbar^{3}} \int_{0}^{\epsilon_{F}} d \epsilon \epsilon^{\frac{3}{2}}=\frac{1}{5 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon_{F}^{\frac{5}{2}}
$$

Exclusion pressure

$$
P_{0}=\frac{\hbar^{2}}{15 \pi^{2} m^{2}}\left(3 \pi^{2} \rho\right)^{\frac{5}{3}}
$$

Denenerate ideal Fermi gas $T<T_{F}$

The Fermi temperature is most often much larges than the gas temperature
Therefore, even though the fermi gas is at finite temperature, it behaves as if it was a near zero temperature when $T \ll T_{F}$

$$
\begin{array}{r}
\rho=\Lambda^{-3}(T) \frac{4}{\sqrt{\pi}} \frac{m^{\frac{3}{2}}}{\hbar^{3}} F\left(\frac{1}{2}\right), \quad \frac{\langle E\rangle}{V}=\frac{\sqrt{2}}{\pi^{2}} \frac{m^{\frac{3}{2}}}{\hbar^{3}} F\left(\frac{3}{2}\right) \\
F(a)=\int_{0}^{\infty} d \epsilon \epsilon^{a} f(\epsilon)=\frac{\beta}{a+1} \int_{0}^{\infty} d \epsilon \frac{\epsilon^{a+1} e^{\beta(\epsilon-\mu)}}{\left(e^{\beta(\epsilon-\mu)}+1\right)^{2}} \\
\text { Sommerfeld expansion: } \frac{k T}{\mu} \ll 1: \quad F(a)=\frac{\mu^{a+1}}{a+1}\left(1+\frac{\pi^{2}}{6} a(a+1)\left(\frac{k T}{\mu}\right)^{2}+\cdots\right) \\
\rho=\frac{1}{3 \pi^{2}} \frac{(2 m)^{\frac{3}{2}}}{\hbar^{3}} \mu^{3 / 2}\left(1+\frac{\pi^{2}}{8}\left(\frac{k T}{\mu}\right)^{2}+\cdots\right) \\
\frac{\langle E\rangle}{V}=\frac{1}{5 \pi^{2}} \frac{(2 m)^{\frac{3}{2}}}{\hbar^{3}} \mu^{5 / 2}\left(1+\frac{5 \pi^{2}}{8}\left(\frac{k T}{\mu}\right)^{2}+\cdots\right)
\end{array}
$$

Denenerate ideal Fermi gas: chemical potential μ

Sommerfeld expansion: $\frac{k T}{\mu} \ll 1$

$$
\rho=\frac{1}{3 \pi^{2}} \frac{(2 m)^{\frac{3}{2}}}{\hbar^{3}} \mu^{3 / 2}\left(1+\frac{\pi^{2}}{8}\left(\frac{k T}{\mu}\right)^{2}+\cdots\right)
$$

Using that $\rho=\frac{1}{3 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon_{F}^{\frac{3}{2}}$

$$
\begin{aligned}
\epsilon_{F}^{\frac{3}{2}} & =\mu^{3 / 2}\left(1+\frac{\pi^{2}}{8}\left(\frac{k T}{\mu}\right)^{2}+\cdots\right) \\
\mu & =\epsilon_{F}\left(1-\frac{\pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right)
\end{aligned}
$$

Denenerate ideal Fermi gas: average energy

Sommerfeld expansion: $\frac{k T}{\mu} \ll 1$

$$
\begin{gathered}
\mu=\epsilon_{F}\left(1-\frac{\pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right) \\
\frac{\langle E\rangle}{V}=\frac{1}{5 \pi^{2}} \frac{(2 m)^{\frac{3}{2}}}{\hbar^{3}} \mu^{5 / 2}\left(1+\frac{5 \pi^{2}}{8}\left(\frac{k T}{\mu}\right)^{2}+\cdots\right) \\
=\frac{1}{5 \pi^{2}} \frac{(2 m)^{\frac{3}{2}}}{\hbar^{3}} \epsilon_{F}^{5 / 2}\left(1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right)^{4} \\
C_{V}=\frac{1}{2}\langle N\rangle \pi^{2} k \frac{T}{T_{F}}
\end{gathered}
$$

Figure 5.20: The specific heat C_{V} / T of a solid as function of T^{2} has an intercept determined by the electrons and a slope determined by the phonons. This specific heat is measured for

$$
\text { romium and Magnesium by S. A. Friedberg, I. Estermann, and J. E. Goldman } 1951 .
$$

Denenerate ideal Fermi gas: pressure

Sommerfeld expansion: $\frac{k T}{\mu} \ll 1$

$$
\begin{gathered}
\frac{\langle E\rangle}{V}=\frac{1}{5 \pi^{2}} \frac{(2 m)^{\frac{3}{2}}}{\hbar^{3}} \epsilon_{F}^{5 / 2}\left(1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right)=\frac{3}{2} P V \\
\mathrm{P}=P_{0}\left(1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right)
\end{gathered}
$$

High temperature limit (classical ideal gas): $T>T_{F}$

Pressure equation of state:

$$
\begin{array}{rlrl}
P & =\frac{1}{3 \pi^{2}} \frac{(2 m)^{3 / 2}}{\hbar^{3}} \int_{0}^{\infty} d \epsilon \frac{\epsilon^{\frac{3}{2}}}{\lambda^{-1} e^{\beta \epsilon}+1}, & \lambda=e^{\beta \mu}<1 \\
\frac{P}{k T} & =\Lambda^{-3}(T) \frac{8}{3 \sqrt{\pi}} \int_{0}^{\infty} d x \frac{x^{\frac{3}{2}}}{\lambda^{-1} e^{x}+1}, & x & =\beta \epsilon
\end{array}
$$

Similarily, we can write the density equation with a dimensionless integral form

$$
\begin{gathered}
\rho=\frac{\sqrt{2}}{\pi^{2}} \frac{m^{3 / 2}}{\hbar^{3}} \int_{0}^{\infty} d \epsilon \frac{\epsilon^{\frac{1}{2}}}{\lambda^{-1} e^{\beta \epsilon}+1} \\
\rho(T, \lambda)=\Lambda^{-3}(T) \frac{4}{\sqrt{\pi}} \int_{0}^{\infty} d x \frac{x^{\frac{1}{2}}}{\lambda^{-1} e^{x}+1}
\end{gathered}
$$

Density and chemical potential: $T>T_{F}$

The density equation determines the chemical potential as a function of temperature and density

$$
\rho(T, \lambda)=\Lambda^{-3}(T) \frac{4}{\sqrt{\pi}} \int_{0}^{\infty} d x \frac{x^{\frac{1}{2}}}{\lambda^{-1} e^{x}+1}, \quad \lambda=e^{\beta \mu}<1
$$

Taylor expand the integrand with respect to the fugacity as the expansion parameter $\lambda<1$

$$
\begin{gathered}
\rho(T, \lambda)=\Lambda^{-3}(T) \frac{4}{\sqrt{\pi}} \int_{0}^{\infty} d \epsilon \lambda x^{\frac{1}{2}} e^{-x}\left(1-\lambda e^{-x}+\cdots\right) \\
\rho=\Lambda^{-3}(T) \frac{4}{\sqrt{\pi}} \lambda\left[\int_{0}^{\infty} d x x^{\frac{1}{2}} e^{-x}-\lambda \int_{0}^{\infty} d x x^{\frac{1}{2}} e^{-2 x}+\cdots\right] \\
\rho=\Lambda^{-3}(T) \frac{4}{\sqrt{\pi}} \lambda\left[\frac{\sqrt{\pi}}{2}-2^{-\frac{5}{2}} \sqrt{\pi} \lambda+\cdots\right] \\
\rho=2 \Lambda^{-3}(T) \lambda\left[1-2^{-3 / 2} \lambda+\cdots\right]
\end{gathered}
$$

Invert the series expansion to find the fugacity in terms of density:

$$
\lambda(T)=\frac{\Lambda^{3}(T) \rho}{2}\left[1+2^{-5 / 2} \Lambda^{3} \rho-\cdots\right]
$$

High temperature limit of pressure: $T>T_{F}$

In the high T limit, the pressure can be written as a virial expansion with respect to density dependency.
Expand the pressure in powers of fugacity:

$$
\begin{gathered}
\frac{P}{k T}=\Lambda^{-3}(T) \frac{8}{3 \sqrt{\pi}} \lambda\left[\int_{0}^{\infty} d x x^{\frac{3}{2}} e^{-x}-\lambda \int_{0}^{\infty} d x x^{\frac{3}{2}} e^{-2 x}+\cdots\right] \\
\frac{P}{k T}=\Lambda^{-3}(T) \frac{8}{3 \sqrt{\pi}} \lambda\left[\frac{3 \sqrt{\pi}}{4}-\lambda \frac{3 \sqrt{\pi}}{16 \sqrt{2}}+\cdots\right] \\
\frac{P}{k T}=2 \Lambda^{-3}(T) \lambda\left[1-2^{-\frac{5}{2}} \lambda+\cdots\right]
\end{gathered}
$$

Inserting the dependence of fugacity on density and keeping only the first two terms:
$\lambda(T)=\frac{\Lambda^{3}(T) \rho}{2}\left[1+2^{-5 / 2} \Lambda^{3} \rho-\cdots\right]$

$$
\frac{\mathrm{P}}{k T}=\rho\left(1+2^{-\frac{7}{2}} \Lambda^{3}(T) \rho\right), \quad B_{2}(T)=2^{-\frac{7}{2}} \Lambda^{3}(T)>0
$$

The positive second virial coefficient means that pressure is larger than the ideal gas pressure due to statistical repelling forces

Equation of state for quantum gases: high T

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{fermions}} \approx k T \rho\left(1+2^{-\frac{7}{2}} \Lambda^{3} \rho\right) \\
& \mathrm{P}_{\mathrm{bosons}} \approx k T \rho\left(1-2^{-\frac{5}{2}} \Lambda^{3} \rho\right)
\end{aligned}
$$

Nonzero second virial coeff. $B_{2}(T) \neq 0$ Bosons: $B_{2}(T)<0$ statistical attraction
 Fermions: $B_{2}(T)>0$ statistical repulsion

