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Ideal quantum gas
Consider a system of ! = ∑$ %$ fre. quantum particles with number %$ of particles in each energy
state &$

Fermions: %$ = 0,1
Bosons:     %$ = 0,1,2,⋯

Grand-canonical partition function: 
Unconditioned sum weighted by the Gibbs factor over all microstates with {%$} partition of particles between
the energy levels {&$}, 
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Thermodynamic properties
Grand-canonical partition function:

Ξ = ∏$
%

%±'() *+(,

∓%
, . /01 2345: 789:3052;0//0: 2345: ;02052

Landau free energy:
Ω(T, V, A) = −DE = −FG log Ξ

Ω = ∓FGK
$

log 1 ± 8MN O+MP

∑$ ≡∫T
U
VW XO W , XO(W) is the density of state in a unit energy interval and 

determined by the system Hamiltonian and spacial dimension
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Thermodynamics of ideal quantum gases
Pressure ! ", $
!% = ±("∫ *+, + log 1 ± 123 425 (1)
Equation for the average number of particles provides the relationship between the density
8 and chemical potential $:

9 ", %, $ = ∫ *+, + 1
13 425 ± 1 = ∫ *+ , + : 4 (2)

Average energy:

< ", %, $ = ∫ *+, + +
13 425 ± 1 = ∫ *+ , + : 4+ (3)

For systems with non-zero $, we use Eq. (2) as the equation that determines $(8) and eliminate the $
dependence in Eqs. (1) and (3), so that we can find the equation of state ! ", 8 and the energy <(", 8)
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Photons: 
Light: traveling electromagnetic (EM) waves

• EM modes are described by 

Øwavevector ! , which is restricted to discrete values ! = #$
% &

Ø frequency of an EM mode is ' = ( ! = (!
• EM mode has two transverse modes

! ⋅ * = +, ! ⋅ - = +

Photons: quanta of light
• Each EM mode is populated by photons, each with a quanta of

energy: 

. = ℏ!( = ℏ'
5Fys4130, 2019

*

(⃗
-



Photon gas: uncountable photons ! ≡ 0
Grand-canonical partition function:

Ξ =&
'

1
1 − *+,ℏ./

Landau potential:

Ω T, V = −45 = 67 8
'

ln 1 − *+,ℏ./ = 67∫ <= > = ln 1 − *+
,?.
@ '

Density of states
> = <= = 2×4D=E<= number of modes with quantum number between n and n+dn
> = <= = >/ 6 <6 = >F G <G = >H I I

• >/ 6 = J

KL
6E, >F G = J

KL.M
GE, >H I = J

KLℏM.M
IE

Pressure: 45 = −67∫ <I>(I) log 1 − *+,H

Average number of particles:           R = ∫ <I > I = H = ∫ <I>(I) S

TUV+S

Average energy:        W = ∫ <I > I = HI = ∫ <I> I H
TUV+S
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Planck distribution: 
Spectral energy distribution of a photon gas 
Average	energy density of a	photon gas:	

3 4, 6

6
=
1

6
∫ :;

<= ; ℏ;

?@ℏ= − 1

=
ℏ

BCDE
F
G

H

:;
;E

?@ℏ= − 1
=

BCIJ

15DEℏE
4J

Energy		per	unit	volume at	a	given	frequency ;

3

6
= ∫ :;ℇ(;, 4)

ℇ ;, 4 =
ℏ

BCDE
;E

?@ℏ= − 1
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Radiation pressure and photon density
Equation	of state

-. = −12∫ 456(5) ln 1 − ;<=ℏ? = −@ 2, . = −Ω(2, .)

- =
CD

45ℏGHG
12 I

- =
J
3.

→ M = NOP
General expression for relativistic free quantum particles

Density of photons at T: 

Q 2 =
R
V

=
.

CDHG
T
U

V

45
5D

;=ℏ? − 1
=

12
ℏH

G WD
CD
, WD = T

U

V

4X
XD

;Y − 1
≈ 2.404
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Thermal vibrations in crystals
Harmonic solids: atoms in a crystal held at lattice sites by elastic
forces
Lattice vibrations: sum of harmonic oscillators 

! = 1
2%&'(

)*
(,&- + /&-0&-)

Virial theorem:    U = 6N 56
- = 389:

Each mode is described as a quantum harmonic oscillator 
;< = ℏ/
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Phonon gas: Debye model
Atoms vibrate with different frequencies and a linear dispersion
! = #$, where $ is the sound wave in the solid

• Density of elastic modes is analogous to the density of states for photons

(in the long-wavelength approximation, continuum elastic medium)  

%& ! = 3
(

2*+
!+

$+
,#

,!
= 3

(

2*+
!+

$-
, /01 0 ≤ ! ≤ !4

• Total number of modes: 35 normal modes (in 3D) for N atoms

35 = 6
7

&8
,!% ! = 3

(

2*+$-
6
7

&8
,!!+

Debye frequency !4 = $
CDEF

G

H
I
→ !4 =

+DK

LMNO
= $ 6*+Q

H
I, Q =

F

G
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Debye model: heat capacity of crystals
• Total average energy of phonons

! ", $ = &
'

()
*+, +

ℏ+

./ℏ( − 1
= 33

$

25678
&
'

()
*++6

ℏ+

./ℏ( − 1

• Heat capacity

9: " =
;!

;" :
= 33

$

25678
&
'

()
*++6

ℏ+

3"

6 ./ℏ(

./ℏ( − 1 6

9: " = 9=3
"

",

8

>
"?
"

, > @ = &
'

A

*B
BC.D

.D − 1 6

EF G ≈ IJK, G ≫ GM

9: " ≈
12

5
=35C

"

"?

8

, G ≪ GM
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Ideal Bose gas: Density of states in 3D
• Energy levels for a particle in a box with periodic boundary conditions:

!" =
ℏ%

&'

&(

)

&
* & = ℏ%

&'

&(

)

&
*&, * = *,, *-, *. , *,,-,. integers

• Quantum state of the particle is described by its wavefunction /0 = 1
%23
4
"⋅7⃗, which is determined by *

Number of available states between modes with * and	* + =* in	3D

A * =* = 4C*&=*

AD ! =! = A * =* → AD ! =
F

2C&
HI/&

ℏI
!
0
&

Average number of particles:     K = ∑M
0

NO PQRS T0
= ∫ =!AD(!)

0
NO PRS T0

Average energy:       X = ∑M
DQ

NO PQRS T0
= ∫ =!AD(!)

D
NO PRS T0

Pressure:       YF = −[\∑M log 1 − 1Ta DQTb = −[\∫ =!AD(!) ln 1 − 1Ta DTb

12

c

d

e

f
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Bose-Einstein condensation
At		a	given	temperature T,	density 3 and	chemical potential 8 are related by	the following equation

3 =, 8 =
1
@

1
ABC − 1

+ ΛBG =
2
I
J
K

L

MN
N
C
O

PQ − 1

3(=, 8) = 3K =, 8 + 3TQ =, 8 = ΛBG = UG
O
A , A = PVW

Critical temperature for Bose Einstein condensation: 
Determined by the density of the bose gas when 8 = 0

YZ([) =
\]

]^_`
[

a b
]

]
b

• Y ≤ YZ: Density is	a	mixture of condensed and	normal	gas	

[ = [g(Y) + [hi(Y) = jBb YZ a(b/])
A macroscopic fraction of particles condense into the ground state with the zero momentum

• Chemical potential l = g remains zero for all temperatures below YZ
• Excess density depends only on temperature and actually decreases with decreasing temperature
• Ground state density becomes non-zero and increases with decreasing temperature

3K
3
= 1 −

3TQ(=)
3

= 1 −
ΛG(=m)
ΛG(=)

= 1 −
=
=m

G/O

• Y > YZ: Density is		that of the normal	gas		

[(Y, l) = [hi(Y, l) = jBb Y ob
]
p

This equation determines the chemical potential l(Y, [)
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Pressure
!

"#
= −

1

'
log 1 − + −

1

Λ- #

2

/
0
1

2

34 4
5
6 log 1 − +789

=
1

Λ- #
:;/6 +

• # ≤ #> + = 1

!

"#
=

1

Λ- #
:;/6 1 → !(#) ∼ #

;
6

The	pressure becomes independent of density below #>

• # > #> + < 1
!(#, +)

"#
=

1

Λ- #
:;/6 + , X(#, +) = Y8- # :-

6

+

14Fys4130, 2019

#> #

!



Chemical potential and equation of state for ! > !#
• The	chemical potential is	determined perturbatively from	the density equation above !#.	

; =
1

Λ? !
@?
A
B →

1
Λ? !#

D
3
2

=
1

Λ? !
G
HIJ

K
BH

L
?
A

→ D
3
2

=
!
!#

?
A
G
HIJ

K
BH

L
?
A

Inverting the equation above we can determine the fugacity B(;, !):

B 1 + 2Q?/AB + ⋯ = D
3
2

!
!#

Q?/A

,

B ≈ D
3
2

!
!#

Q?A
1 − D

3
2

2!
!#

Q ?A
→

V = W! ln D ?
A

X
XY

QZ[ 1 − D ?
A

AX
XY

Q Z
[

• Equation of state: elimite the chemical potential  from \
]X
= J

^Z X
@_/? B

\
]X
≈ ; + `A ! ;A + ⋯ , `A ! = − J

a A
Λ? ! < 0

The Bose gas pressure is effectively lowered by statistical attraction forces
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Ideal Fermi gases: Density of states in 3D

• Ψ"($) = '
()*
+ ,⋅$ 1-particle wave function

• Each fermion (i.e. electron) has a spin moment = ±"
/

• Energy levels a fermion in a box 0 = 12 with periodic boundary conditions:  34 =
ℏ(

/6
/7
8

/
9/, 

Number of available states between a mode with n between 9 :9; 9 + ;9:> 9 ;9 = 2×4B9/;9

C
,

:=2×∫ ;9 4B9/ = ∫ ;9 >(9)

Density of states corresponding to energy 3:

> 3 = > 9 E4
EF
→ > 3 = 2 H

/7(
6I/(

ℏI
3
K
(

The difference with respect to the density of states of bosons is the spin degeneracy of the energy levels (hence the extra factor of 2).
Different conventions: Sometimes the spin degeneneracy is not included in the density of states, and appears separately on the integral 
expressions
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Pressure and average energy

! = #$ 2
&'

()/'

ℏ) ,
-

.
/0 01/' log 1 + 789 :8;

! = 2
3

2
&'

(
)
'

ℏ) ,-
.
/0 0

)
'

79 :8; + 1 =
2
3
=
>

General expression for non-relativistic quantum ideal gas (independent of ⟨@⟩(0) ) 
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Fermi distribution at T=0 K

! " =
$

%& '() *$
→,→- .

1, " < 2
0, " > 2

"5 ≡ 2 Fermi energy level below which all states are occupied
Determined by the gas density "5 7 =

ℏ9

:;
3=:7

9

>

7("5) =
1

3=:
2B

ℏ:

C/:

"5

C
:

Energy 
E -

F
=

2

=:
BC/:

ℏC
G
-

HI

J" "
C
: =

1

5=:
2B

ℏ:

C/:

"5

L
:

Exclusion pressure

Y- =
ℏ:

15=:B:
3=:7

L
C
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Denenerate ideal Fermi gas ! < !#
The	Fermi	temperature is	most	often much larges than the gas	temperature

Therefore,	even though the fermi gas	is	at	finite temperature,	it	behaves as	if it	was a	near zero	temperature when ! ≪ !#

= = Λ@A !
4
C
D
A
E

ℏA
G
1
2
,

J
K
=

2
CE

D
A
E

ℏA
G
3
2

G M = N
O

P
QR RST R =

U
M + 1

N
O

P
QR

RSWXYZ [@\

YZ [@\ + 1 E

Sommerfeld	expansion:			ab
\
≪ 1 :												G M = \cde

SWX
1 + fg

h
M M + 1 ab

\

E
+ ⋯

= =
1
3CE

(2D)
A
E

ℏA
lA/E 1 +

CE

8
o!
l

E

+ ⋯

J
K
=

1
5CE

(2D)
A
E

ℏA
lq/E 1 +

5CE

8
o!
l

E

+ ⋯
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Denenerate ideal Fermi gas: chemical potential !
Sommerfeld	expansion:			23

4
≪ 1

7 =
1
3:;

(2>)
@
;

ℏ@
!@/; 1 +

:;

8
EF
!

;

+⋯

Using	that 7 = L

@MN
;O

ℏN

@/;
PQ

R
N

PQ

@
; = !@/; 1 +

:;

8
EF
!

;

+⋯

! = PQ 1 −
:;

12
EF
PQ

;

+ ⋯
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Denenerate ideal Fermi gas: average energy
Sommerfeld	expansion:			12

3
≪ 1

6 = 89 1 −
;<

12
>?
89

<

+ ⋯

B
C
=

1
5;<

(2F)
H
<

ℏH
6J/< 1 +

5;<

8
>?
6

<

+⋯

= M
JNO

(<P)
Q
O

ℏQ
89
J/< 1 + JNO

M<
12
RS

<
+ ⋯

CU =
1
2
V ;<>

?
?9
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Denenerate ideal Fermi gas: pressure
Sommerfeld	expansion:			12

3
≪ 1

6
7
=

1
5:;

(2>)
@
;

ℏ@
BC
D/; 1 +

5:;

12
GH
BC

;

+ ⋯ =
3
2
K7

P = KM 1 + DNO

P;
12
QR

;
+ ⋯
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High temperature limit (classical ideal gas): ! > !#
Pressure	equation of state:

2 =
1
367

(2:)</7

ℏ< ?
@

A
BC

C
<
7

DEFGHI + 1 , D = GHL < 1

2
N! = ΛE<(!)

8
3 6

?
@

A
BQ

Q
<
7

DEFGR + 1 , Q = SC

Similarily,	we can write the density equation with a	dimensionless integral	form

] =
2
67

:</7

ℏ< ?
@

A
BC

C
F
7

DEFGHI + 1

](!, D) = ΛE< !
4
6
?
@

A
BQ

Q
F
7

DEFGR + 1
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Density and chemical potential: ! > !#
The	density equation determines the chemical potential as	a	function of temperature and	density

8 !, : = Λ=> !
4

@
A
B

C

DE
E
F
G

:=FHI + 1
, : = HLM < 1

Taylor	expand the integrand with respect to	the fugacity	as	the expansion parameter		: < 1

8 !, : = Λ=> !
R

S
∫
B

C
DU :E

V

WH=I 1 − :H=I + ⋯

8 = Λ=> !
4

@
: A

B

C

DE E
F
GH=I − :A

B

C

DE E
F
GH=GI + ⋯

8 = Λ=> !
4

@
:

@

2
− 2

=
[
G @: + ⋯

8 = 2Λ=> ! : 1 − 2=>/G: + ⋯

Invert the series expansion to find the fugacity in terms of density: 

: ! =
Λ>(!)8

2
1 + 2=[/GΛ>8 − ⋯
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High temperature limit of pressure: ! > !#
In	the high T	limit,	the pressure can be	written as	a	virial expansion with respect to	density dependency.	

Expand the pressure in	powers of fugacity:

A
B!

= ΛEF(!)
8
3 K

L M
N

O

PQ Q
F
RSET − LM

N

O

PQ Q
F
RSERT + ⋯

X
YZ
= ΛEF(!) [

F \
L F \

]
− L F \

^_ R
+ ⋯

X
YZ
= 2ΛEF ! L 1 − 2E

b
cL + ⋯

Inserting the dependence of fugacity	on density and	keeping only the first	two terms:	

L ! = ef(Z)g

R
1 + 2Eh/RΛFj − ⋯

k

YZ
= j 1 + 2E

l
cΛF(!)j , mR ! = 2E

l
cΛF ! > 0

The	positive	second virial coefficient means that pressure is	larger than the ideal	gas	pressure due	to	statistical repelling forces
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Equation of state for quantum gases: ℎ"#ℎ $

P&'()*+,- ≈ /$0 1 + 24
5
6Λ80

P9+-+:; ≈ /$0 1 − 24
=
6Λ80

Nonzero second virial coeff.		NO $ ≠ 0
Bosons: NO $ < 0 statistical attraction
Fermions: NO $ > 0 statistical repulsion

26Fys4130, 2019


