Lecture 21
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Paramagnetic systems
Paramagnetic spin model



Magnetic materials

* Have a magnetic dipole moment associated with the spin of electrons
* Spins interact with an external magnetic field Y

» Susceptible to change their magnetization in the presence of a
magnetic field

QOParamagnetism — retain magnetization only in the presence of a
magnetic field

OFerromagnetism - have a rermanent magnetization even in the absence
of an applied magnetic field



Paramagnetic materials

No applied magnetic field With applied magnetic field
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Example:
Aluminum, copper, gold
Iron bearing minerals at sufficiently big temperatures
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Origin of magnetism: electron spin

Orbital magnetic moment
Horpit = gillpm,,

* quantization of angular
momentum

orbital number [ =0,1,2 -

my=—lL—l4+1,-,1—1,1

Orbital Lande’ factor
g=1

Intrinsic spin magnetic moment

Hs = GsUBS, S =

-+
N =

Bohr magneton

gs = 2 Spin Lande’ factor

Total magnetic moment
K = Uorpit + Hspin = gjUp My

mi=m+s=—/,—J+1,-,]—-1]
J total spin number
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Electron spin in a magnetic field

To study paramagnetic properties, it suffices to consider the potential energy of a single electron

in a uniform magnetic field
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J total spin angular momentum operator (spin+orbital)

* Energy levels for uniform, uniaxial magnetic field B = (0,0, B):

Em = _g.uBmBl
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m

where m = —J,—J + 1,---] — 1,], where ] is the spin quantum number determined by the

orbital of the electron
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Single particle partition function Z;
Energy levels: €,, = —gugBm, where m = —J,—J +1,---] — 1,]

One particle partition function is descrived by Boltzmann statistics

X

We mage use of the following substitution: a = e/, x = BgugBJ

J

a]+1 _a_]
Zl(T’B) — z eﬁg.uBBm — a—](l +a+ -+ a2]—1 + aZ]) — —
m:—] a
sinh (%x)

Z{(T,B) =

sinh (2])



Gibbs free energy as a function of T and applied field B

Gibbs free energy follows from the partition function as
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G(T,B) =—kTInZ, = —len(
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Mean magnetization as a function of T and applied field B

Mean magnetization is the conjugate
variable to the applied field

0G

(m) = — (a_B)T = gug)B;(x),

The function B, (x) is called Brillouin
function

B;(x) = 2]2-; ! coth (2]2-; ! x) — 2—1]coth (;—])
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Properties of Brillouin function for small x &

2/ +1 2] +1 1 P e ]
B;(x) = 2] coth( 2] x>_2]COth(2]) SZ:
N 0.4
High temperature /low applied magnetic field limit 02/
1 x 3 % : 2 3 4 5
x <K 1- pgugB] <<1—>coth(x)z;+§+0(x ) x
J+1

B;(x) increases linearly near origin: B;(x) = 5 X + -

Magnetic moment:
2

(m) = guBy () ~ BB, 1= gupJJ+ 1)
Magnetic susceptibility:

x(T) = (0—8 =K~ 7 Curie's law

0(m>> _ B,
. 3
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Properties of Brillouin function for large x

B;(x) = 2]2-; ! coth (2]2-; ! x) — 2—1] coth (Zx_]>

Low temperature limit
x> 1-> pgugB] > 1 - kT < gugB]

B;(x) saturates to a constant B;(x) — 1

Magnetic moment (m) = gup/B;(x) also

0.6

saturates at my = gug/
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Classical magnetism

The magnetic dipole moment u is a vector that can point
in any direction

* Hamiltonian of a classical spin in a uniform magnetic field
H=—-u -B=—uBcosf

» Classical partition function

B
0
2w e A7 sinh(BuB) £
7, = dc,bj dO sin @ ePHB cost — ‘u
0

Jo puB
* Mean magnetization

ub kT
m = ,u[cot( )

kT ,uB



Classical limit of the Brillouin function: at fixed x as | > 1

B;(x) = 2]2-; 1 coth <2]2-; 1 x) — 2—1] coth (;])

B;(x) approaches the Langevin function .
B;(x) = L(x) = cothx — "
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Electron in the first orbital L = 0, g = 2: Spin 2

The Brilouin function

B;(x) = 2]2-; ! coth (2]2-; ! x) — 2—1]coth (Zij)

Reduces to

B1(x) = 2 coth 2x — cothx = tanhx
2

—B, ()
- - tanh(x)

Mean magnetication

(m) = up tanh(BupB)




Ising model of paramagnets WH—*—F

* A system of N independent, localised particles with spin s =
+ 1 at finite temperature

* Spin interact with the applied magnetic field via an interaction

potential
N
Hy = _2.“351' B
i



Statistics of paramagnets 4+—+—H—+—+—H—*—+—

» Spin interact with the applied magnetic field via an
interaction potential Hy = —ugSy - B, Sy = X1 s;

* N particle partition function

7, = Z ePsB = 2 cosh(BuzB),

s=+1
Zn = Z¥ = 2Ncosh™ (BugB)

Gibbs free energy
G(B,T) = —NkT In|2 cosh(BuzB)] s 0 5

Maximum Gibbs energy at B = 0 (disordered spins)




Mean magnetization and susceptibility —

1

. o 0.5
» Mean magnetization

0,

(Npg)

0 5
M = ug(S) = _G_BG(T'B) = Nug tanh(BugB) s

-5 0 5

» Susceptibility

oM 1 N 12
X(B,T) = ( ) ad:
T

9B); kT cosh?(BugB)

Fys4130, 2019 16



Thermodynamics of paramagnets

* Mean energy

0
U(T, B) — —ﬁln(zlv) — —N‘LlBB tanh(ﬂﬂBB)

* Entropy

G (GG) _U—G
R

S(T,B)
= Nk|In(2 cosh(BupB)) — BugB tanh(BugB)]

Maximum entropy at B = 0 (disordered spins)
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Thermodynamics of paramagnets %—+—+—*—*—+—*—*—*—+—

* Mean energy

U(T,B) = —NugB tanh(BugB) 0.8
Entropy 6l
S(T,B) = Nk|In(2 cosh(BugB)) — BugB tanh(BugB)|
| 1 (S Z 04l
T (au)B n
_ + T > 0: Thermal fluctuations tends to misalign the spins relative to 5| r>0 T <0
1’ the direction of B. The higher the temperature, the higher the
spin disorder and hence tﬁe entropy
0—1 -0.5 0 0.5
« T = co Maximum entropy (randomly oriented spins) regardless U/(Npg B)

of B. Equivalent to the entropy of random spins at B = 0

B
‘L « T < 0: Thermal fluctuations are so strong that spins tend to align
o opposite to the direction of B. The higher the temperature, the
smaller the entropy as there are more and more spins pointing
downwards



