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Paramagnetic systems 

Paramagnetic spin model
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Magnetic materials

• Have a magnetic dipole moment associated with the spin of electrons

• Spins interact with an external magnetic field

• Susceptible to change their magnetization in the presence of a 
magnetic field

qParamagnetism --- retain magnetization only in the presence of a 
magnetic field

qFerromagnetism – have a permanent magnetization even in the absence 
of an applied magnetic field

2Fys4130, 2019

!



Example:
Aluminum, copper, gold  
Iron bearing minerals at sufficiently big temperatures
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Paramagnetic materials

No applied magnetic field With applied magnetic field

!



Origin of magnetism: electron spin
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!" #$ = &$'(), + = ±12

Intrinsic spin magnetic moment 

Orbital  magnetic moment 

#/0123 = &4'(54,

• quantization of angular
momentum

orbital number  6 = 0, 1, 2⋯

94 = −6, −6 + 1,⋯ , 6 − 1, 6

Orbital Lande’ factor
&4 = 1

Total  magnetic moment
# = #/0123 + #$<2= = &>'( 5>

9? = 94 + + = −@, −@ + 1,⋯ , @ − 1, @
@ total spin number

'( = Aℏ
CDE

Bohr magneton

&$ = 2 Spin Lande’ factor



Electron spin in a magnetic field

To study paramagnetic properties, it suffices to consider the potential energy of a single electron
in a uniform magnetic field

!"#$$ = −(̂ ⋅ *+, (̂ = - (. /0, /0 = /1 + *3

/0 total spin angular momentum operator (spin+orbital) 

• Energy levels for uniform, uniaxial magnetic field 4 = (0,0, +):

89 = −-(.:+, 

where : = −0,−0 + 1,⋯ 0 − 1, 0, where 0 is the spin quantum number determined by the
orbital of the electron
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Single particle partition function !"

Energy levels: #$ = −'()*+, where + = −,,−, + 1,⋯ , − 1, ,

One particle partition function is descrived by Boltzmann statistics

We mage use of the following substitution: 1 = 2
3
4, 5 = 6'()*,

!"(8, *) = :
$;<=

=

2>?@A)$ = 1<=(1 + 1 +⋯+ 1B=<" + 1B=) =
1 =C" − 1<=

1 − 1

!"(8, *) =
sinh 2, + 1

2, 5

sinh 5
2,
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Gibbs free energy as a function of ! and applied field "

Gibbs free energy follows from the partition function as 

# !, " = −'! ln *+ = −'! ln
,-./ 0123

01 4
,-./ 5

01
, 6 = 789:";
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Mean magnetization as a function of ! and applied field "

Mean magnetization is the conjugate
variable to the applied field

# = − &'
&" (

= )*+,"- . ,

The function "- . is called Brillouin
function
"- . = 2, + 1

2, coth 2, + 1
2, . − 1

2, coth
.
2,
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Properties of Brillouin function for small x

High temperature /low applied magnetic field limit 

! ≪ 1 → %&'()* ≪ 1 → +,-ℎ(!) ≈
1
!
+
!
3
+ 4(!5)

)6 ! increases linearly near origin:					)6 ! ≈
6DE
56
! + ⋯

Magnetic moment: 

⟨H⟩ = &'(*)6 ! ≈
'K

3
%), ' = &'( *(* + 1)

Magnetic susceptibility:

M(N) =
O H
O)

P

=
%
3
'K ∼

1
N

RSTUVWX YZ[
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)6 ! =
2* + 1
2*

coth
2* + 1
2*

! −
1
2*
coth

!
2*



Properties of Brillouin function for large x

Low temperature limit 
! ≫ 1 → %&'()* ≫ 1 → +, ≪ &'()*

). ! saturates to	a	constant ). ! → 1

Magnetic moment ⟨:⟩ = &'(*). ! also  saturates at := = &'(*
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). ! = 2* + 1
2* coth 2* + 1

2* ! − 1
2* coth

!
2*



Classical magnetism

The magnetic dipole moment ! is a vector that can point
in any direction

• Hamiltonian of a classical spin in a uniform magnetic field
H = −% ⋅ ' = −!( cos ,

• Classical partition function

-. = /
0

12
34/

0

2
3, sin , 789: ;<= > =

4@ sinh(C!()
C!(

• Mean magnetization

E = ! coth
!(
GH

−
GH
!(
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Classical limit of the Brillouin function: at fixed ! as " ≫ 1
%& ! = 2" + 1

2" coth 2" + 1
2" ! − 1

2" coth
!
2"

%& ! approaches the Langevin function
%& ! → ℒ ! = coth ! − 1!
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Electron in the first orbital ! = 0, % = 2: Spin ½ 
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The Brilouin function

'( ) = 2* + 1
2* coth 2* + 1

2* ) − 1
2* coth

)
2*

Reduces to 
'2
3
) = 2 coth 2) − coth ) = tanh )

Mean magnetication

⟨7⟩ = 9: tanh(<9:')



Ising model of paramagnets

• A system of N independent, localised particles with spin ! =
± 1 at finite temperature

• Spin interact with the applied magnetic field via an interaction
potential

%& = −(
)

&
*+!) ,
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Statistics of paramagnets 

• Spin interact with the applied magnetic field via an 
interaction potential !" = −%&'" ⋅ ), '" = ∑," -,
• N particle partition function

./ = 0
12±/

451& = 2 cosh ;%&) ,

Z= = ./" = 2"cosh" ;%&)
Gibbs free energy

> ), ? = −@A? ln 2 cosh ;%&)
Maximum Gibbs energy at ) = 0 (disordered spins)
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Mean magnetization and susceptibility

• Mean magnetization

! = #$ % = − '
'( )(+, () = .#$ tanh 3#$(

• Susceptibility

4 (, + = '!
'( 5

= 1
7+

.#$8
cosh8(3#$()
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Thermodynamics of paramagnets

• Mean energy

U T, B = − '
'( ln +, = −-./0 tanh (./0

• Entropy

4 =— '6
'7 /

= 8 − 6
7

4 7, 0
= -9 ln 2 cosh (./0 − (./0 tanh (./0

Maximum entropy at 0 = 0 (disordered spins)
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Thermodynamics of paramagnets

• Mean energy
U T, B = −'()* tanh /()*

• Entropy
0 1, * = '2 ln 2 cosh /()* − /()* tanh /()*

1
1 =

90
9: )

• 1 > 0: Thermal fluctuations tends to misalign the spins relative to 
the direction of *.  The higher the temperature, the higher the
spin disorder and hence the entropy

• 1 = ∞Maximum entropy (randomly oriented spins) regardless
of *. Equivalent to the entropy of random spins at * = 0

• 1 < 0: Thermal fluctuations are so strong that spins tend to align
opposite to the direction of *. The higher the temperature, the
smaller the entropy as there are more and more spins pointing
downwards
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1 > 0 1 < 0
@
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