Lecture 22

05.04.2019

Ferromagnetic system
Ising model
1D solution



Magnetic materials

* Have a magnetic dipole moment associated with the net spin of atoms
» Spins interact with an external magnetic field or with each other

« Susceptible to change their magnetization in the presence of a magnetic

field

QOParamagnetism — retain magnetization only in the presence of a magnetic field

QFerromagnetism - have a permanent magnetization even in the absence of an
applied magnetic field



Paramagnetic materials

No applied magnetic field With applied magnetic field

-« No mean magnetization
/ / (m)=0,vTatB =0 B T l T T Mean magnetization dependent
Zz l / T : T T On B and temperature
—_ N\ “\ T T (m)(T, B) = Nug tanh(BupB)
7 (I
Susceptibility

x(B,T) = (6—B)T kT cosh2(BugB)

Example:
Aluminum, copper, gold
Iron bearing minerals at sufficiently big temperatures
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Ferromagnetic materials

No applied magnetic field

(.

T T T Net mean magnetization
Due to spin-spin interactions
(m)+0,atB=0and T < T,

Example:
Iron bearing minerals at low temperatures
Nickel, magnetite, cobalt and their alloys
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With applied magnetic field

Net mean magnetization

Due to spin-spin interactions

And applied magnetic field
(m) #0




Ising model for ferromagnets [

A system of N spins s; = +1 on a periodic lattice and in a uniform
magnetic field B. Spins interact with their nearest neighbor on the lattice

Hy = _]z z Si5)j ZSiB» (up=1)
i n.r{.=ofi i |L 1' ‘#

4 7

> ] > 0 is the coupling constant, such that the energy is minimized when

: : : _— . (x5 Yiv1)
neighboring spins point in the same direction L] O

L
> Summation over the nearest neighbors (n.n.) j atoms that are coupled to the ith (xi—1<r>J’i) . (és+1r3’i)
atom on a crystal lattice (short hand notation used sometime = (ij)) (x5 v;)
» The form of the spin-spin interaction as —Js;s; originates the Coulomb interactions (] O []
(x5 Yi-1)

between the electrons (spin carriers); magnetic dipole interactions are too weak.
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Ising model in 1D 4+—H—+—+—+—+—+—+—+—

N
N—1
Hy =—J Z SiSi+1 _zSiB;Si = +1
i=0 i

Periodic boundary conditions sy = s,

Partition function for N spins: weighted sum over all spin

configurations {s;}
7y = Z o —BHN({si)
{si}
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Ising model in 1D 4+—+—+—H—+—+—+—+—+—

N-1
Hy =—] z SiSi+1 _zsiB:Si = *1
i=0 i

Periodic boundary conditions sy = s

Partition function for N spins
Zy = Z e—BHN({s:)
{si}

— 3.3](5051 +51S2*+SN—-1S0) +BB(So+S1+ " +Sn—1)

{si}
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Transfer matrix T; ; —

Zy can be represented as a product of (2x2) transfer matrices
Tijiva

Partition function for N spins
Iy = z eBJ(s051+5152 - +SN-1S0)+BB(So+51+:+SN)

{si}

S]_+SZ SN—1+SO

eﬁ]SNSO-l'.BB 2

_ z .315051+,BBS +Sl pPJs152+ BB
1Si}



Transfer matrix —

Partition function for N spins

7 = .3150514‘.3350-'-51 ﬁ] 152‘*‘,3351-|_S2 ﬁJSN 150+ﬁBSN 1+SO Tsl . TS52 ... T50
N 1 SN
{Si} {Sl}
. S; + S;
T, "' = exp (IB]SiSHl + BB — > l+1); s; = *1

Identical transfer matrices for all spin pairs
Siq1 =1 si=—1
si=1 (8'8(]+B) e_,B] )
e_ﬁ] e.B(J_B)

Si=_1



Trace of Transfer matrix —

Partition function for N spins

Zy = Z Tt -T2 T.0 = Tr(TV) = Y + 23,
{si}

Where 4, , are the eigenvalues of the transfer matrix

- (eﬁ(1+3) o—BJ )
e_.B] eﬁ(]_B)



Transfer matrix: eigenvalues —

Partition function for N spins

Ty = Z TS T2 TS0 = Tr(TN) = AY + A3,
{si}

A1, are determined as the solution of the characteristic equation

Heﬁ(]'l'B) — A e_,B]

=0 -
e_,Bj eﬁ(]_B) — /IH

(e.B(j'I'B) — A)(@'B(]_B) — A) — 8_2’8] — 0



Transfer matrix: eigenvalues —

A1, are determined as the solution of the characteristic equation

A2 — 22ePJ cosh(BB) + 2sinh(2B)) = 0

With the solution
A1, = ePl cosh(BB) + \/ezﬁf cosh?(BB) — 2 sinh(2B])

Ao = ePJ cosh(BB) + \/82/3] sinh?(BB) + e~2BJ



Solution for ] = 0and B # 0

(Paramagnetic limit) %W
Zy = Tr(TV) =AY + A%,

A, = 2cosh(fB), 1, =0

Zy = 2N coshV (BB) - Gy (T,B) = —NkT In[2 cosh(BB)]

Paramagnetic mean magnetization

M= — (g—g)T = N tanh(fSB)

Paramagnetic susceptibility

B oM B 1 1
A= (O_B)T = NP cosh?(B) T




Solution for J # 0 and B = 0 %—HHH%—

Zy = Tr(TN) =AY + A%,

A1z = ePl cosh(BB) + \[8251 sinh2(BB) + e~2P]

*B=0—- Ay =2cosh(B]), A, = 2sinh(f])

Zy = 2N cosh™ (B))(1 + tanh™ (B)))

lim tanh"(x) =0

N—>oo

Zy is dominated by the largest eigenvalue 1{, X

Zy =~ 2N cosh™ (B))

Gy(T) = —NKkT In|2 cosh(fS])]
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Solution for ] # 0 and B = 0

Zy =~ 2N cosh™(B))

[nternal energy
dIn(Z
U(T,N) = — 6(ﬁ v —JN tanh(B))
Heat capacity

C) = (Z#)N = Nk (COS{IIB(IB]))
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Solution for B # 0 -ttt

Zy is determined by the largest eigenvalue, i.e. A}

N
Zy =AY [1 + ] [eﬁ] cosh(BB) + \/ezﬁ] sinh?(BB) + e‘zﬁ/]

Gibbs free energy
Gy(T,B) = —NkT In [eﬁf cosh(B8B) + \/ezﬁf sinh?(BB) + 6‘231]




Mean magnetization B # 0

Gn(T,B) = —NkT In [eﬁ] cosh(BB) + \/ezf”f sinh2(BB) + e‘zﬁ/]

Mean magnetization

dGy(T,B)
M(T,B) = — ( )
0B .
V= N sinh(SB)

\/sinhz (BB) + exp(—4p))
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Mean magnetization B — 0 ——— i ——————

M sinh(fB)
N

\/sinhz (BB) + exp(—48))

In the limit of B = 0, (s) — 0 at every temperature:

* Nearest neighbor spin-spin interaction in 1D can not create spin order
at any finite temperature

* Any themal fluctuation destroys the net magnetization
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1D Ising model: No phase transition

At any nonzero temperature, it is energetically favorable to create
defects (kinks) due to thermal fluctuations

Change in energy for flipping a spin (kink in the ordered state)
U, = —NJ (order), U, =—(N—2)] + 2] (with a kink) - AU = 4]
Change in entropy for flipping a spin anywhere in the 1D chain (N sites)
AS = klogN

The spin flipping due to thermal fluctuations is favored when it lowers the Helmholtz free energy

AF =AU —TAS <0—- J—kTlogN <0

This is always satisfied at any T > 0, hence the spin order is spontaneously broken by
kinks due thermal fluctuations.



