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Weiss mean-field theory
Ferromagnetic phase transition



Ising model for ferromagnets
B

A system of N spins s; = +1 on a periodic lattice and in a uniform A A 4
magnetic field B. Spins interact with their nearest neighbor on the lattice 1' 1' ﬂ'

HN=—IZ z SiSJ—ZSiB, (up=1)
i n.1'{.=ofi i q} i) ‘L

4 7

> ] > 0 is the coupling constant, such that the energy is minimized when
(xi»)ﬁﬂ)
/

neighboring spins point in the same direction [ L
> Summation over the nearest neighbors (n.n.) j atoms that are coupled to the ith ~ (¥i-1}Yi) (Mi+1, ¥i)
atom on a crystal lattice (short hand notation used sometime = (ij)) O(ygyl){)
» The form of the spin-spin interaction as —Js;s; originates the Coulomb interactions (] : O ) L]
Xi)Yi-1

between the electrons (spin carriers); magnetic dipole interactions are too weak.



Ising model for ferromagnets

A system of N spins s; = +1 on a periodic lattice and in a uniform A A 4 IB
magnetic field B. Spins interact with their nearest neighbor on the lattice 1} 1' T

HN=—]z z SiSJ'_Z:SiB, (up=1) |
i = i 1& ? ‘E

nn.of i

» Ising model exhibits a critical phase transition at a finite tempeture (%0, Yit1)
T, and applied field B = 0 00—
iy 0 Ky
: : : .. : O SRS
* The properties of this ferromagnetic phase transition can be studied (x5, v7)
within the mean-field approximation =
+—O0—-

(i, Yi-1)



1D Ising model: No phase transition

At any nonzero temperature, it is energetically favorable to create
defects (kinks) due to thermal fluctuations

Change in energy for flipping a spin (kink in the ordered state)
U, = —NJ (order), U, =—(N—2)] + 2] (with a kink) - AU = 4]
Change in entropy for flipping a spin anywhere in the 1D chain (N sites)
AS = klogN

The spin flipping due to thermal fluctuations is favored when it lowers the Helmholtz free energy

AF =AU —TAS <0—- J—kTlogN <0

This is always satisfied at any T > 0, hence the spin order is spontaneously broken by
kinks due thermal fluctuations.



Ising model for ferromagnetism

T < T,

T > T,

Critical phase transition occurs at a unique point in the B — T diagram: (B, = 0, T,)
Q: How do we theoretically predict this critical point and the behavior near it?

A: Mean-field approximation, Landau field theory, renormalization group techniques
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Ising model for ferromagnetism

T <T,

The critical temperature T can be estimated in the mean-field approximation

2D Exact solution given by Onsager (tour de force!)
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Weiss mean-field theory

DS
z=2d 2
HN=—]ZSiSj—ZSiB=—ZSi ] 2 Sj+B
- . . L s )
(ij) i i j=n.n.(i) 51(’ o S3
* We assume that each spin interacts on average in the same with its neighbors
regardless of its spin value. This means that we can replace the neighboring spin s; by o s
3

some mean magnetization + small fluctuations around it

Sj=m+(sj—m)=m+5sj, m

1
N\&

l

z si> = (s) J Sog zjm

e Such that the Hamiltonian reads now as

Z \‘\\ Z ) //r'
HN=—ZSi Ji z m+ B —Zsi]z}\é':sj
. /,”,j \\\\

i j=nn.(i) i

z is the coordination number; z = 2d for a
P square lattice (z =4 in 2D, z = 6 in 3D)
 Mean-field approximation: Ignore the effect of fluctuations around the mean field

H = _Zi SiBeffl where Beff = B + zJm, z=2d

Self-consistent equation: the mean field m must the same as the average
magnetization per spin m = (s)
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Self-consistent equation

Mean-field Hamiltonian looks like that for a paramagnetic system, except that the
effective magnetic field has a contribution from the mean field

HN = _ZSiBeff' Beff = B+ Z]m, Si = +1

l

* One-spin partition function
Z, = eBB+zJm) 4 o=B(B+zJm) — 2 cosh[B(B + zJm)]

« Mean magnetization per spin must be the same as the mean field

.y )_161nZl
m = (s _,BaBeff

(transcendental equation, not easy to solve analytically; so we look for asymptotic solutions)

— m = tanh[f(B + z/m)]




Self-consistent equation
* Limitof B=0

_ h[z]m
m= tan KT

+ solved graphically by looking at the intersection points between
the diagonal curve and the tanh(x)

- e g
Critical temperature: T, ==~

- tanh [z m|
m= tan Tm

* ForT >T,, there is only one root at m = 0
« ForT < T,, there are three roots at m = 0, +m(T)

 The non-zero solutions depend on the temperature below T,

Fys4130, 2019
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Self-consistent equation

* Low temperature near T,, T < T,, m small
m = tanh [%m] (1)

* For small m, use the Taylor expansion of tanh(x)

T, 1<TC>3 ;
m=gm=3\r) ™

To find the dependence of the roots my(T) on temperature

mo(T) = i@%(l - %)%

Solution valid only very close to the critical temperature
my(T) is otherwise the numerical solution of eq. (1)
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Self-consisten equation

1/2

N w

I%P@%>

(-7

Critical exponent S:
|mg| ~ (Tc - T)B

1

ﬂMF::E
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Mean magnetization for B # 0

m = tanh|B(B + zJm)] (1)

» T < T, msmall; Weak applied field, B such that we Taylor
expand the tanh

m =~ B(B + zJm) — %,83(B + zJm)3

3

B T 1T,
m~gptrm-s(7) ™
3
a=3(r) mri-gmF
* At the critical temperature T = T,
B 1 . 1
KT, ~ gm 2 lm| ~ Bé

» Critical exponent: & = 3

Fys4130, 2019

Numerical solution of eq. (1)
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Mean magnetization for B # 0

m = tanh[B(B + zJm)]

m A
» T < T, msmall; Weak applied field, B such that we Taylor T< Te
expand the tanh T=Te
mz,[)’(B+z]m)—%B3(B+z]m)3 T>Te
B T, I A
"“ﬁ*?"“ﬂ?) m 5
B 1 TC 3 T /
3 C
Z o~ 2(2) mEa(1 ——)
kT~ 3 (T) m ( 7)™
* At the critical temperature T = T,
B 1 , z Inflection point at T = T. and B = 0
kTe 3 where y = 2% - ©

0B
» Critical exponent: & = 3
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Susceptibility near critical point

 Near the critical point T ~ T,

B 1/Ty° T.
—_— | — 1——
kT 3(T> m +( T)m'

-1 3 -1

(), <[ (&) s+

0, T=T,
2 — 3
mgy = T Tc
3(7) (F-1). TS
Critical exponent y near the phase transition

(k@-m, T=2T,
Y= 2k(T=T)1 T<T,

x~I|T.—T|7Y, Yur =1
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Gibbs free energy minimized by +m,

=—J Z(ij) SiSj — XisiB, replace the spins by s; = m+ (s; —m)

Hy = zJN m? — (B + 2zJm) Z s; = Zy = e BNZIm* 2 cosh(B(2zJm + B))

Gibbs free energy
G(B,T) = —NkTIn(Z,)

G(B,T)_kT
N 2

B
— kT In [2 cosh( m + kT) l

* Low temperature T < T,,B =0
Gibbs free energy per spin at zero applied field

G(OI m) kTC TC kT‘L!-
0, ——~ "' 7 y [— 2 4
g(0,m) N 2 ( T)m t ™

has two minima corresponding to +my(T) for T < T,

G(m,0)/N




Heat capacity

* Low temperature T <T,, B=0

G(0,m(T)) = —cy — cym? + c;m*,  m(T) = (T, — T)V/?

Heat capacity measured the heat exchange per temperature increase
—_— (65) _ 302G

B= " \or/s — aT?)

C T’a<’aG> T16 1(2 + 4c,m?) t
B~ m am m am m cgtm com cons

Critical exponent a at T =T, and B=0
CB'2’|T'_'T}|a

ayr=0
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Critical exponents for the magnetic phase transition

Mean-field universality class

Order parameter M(T,B=0)~ (T.—T)?, PBuyr= %
Critical isotherm M(T,,B) ~ |B|°, &yr =3
Susceptibility x(T,B=0)~|T.—=T|™Y, yyr=1
Heat capacity Cg(T,B=0)~|T,—T|™%, ayr=20
Exponent (2D [3D | Meanfield _
a 0 0.11 0
B 1/8 0.32 1/2
y 7/4 1.24 1
1) 15 4.90 3

Fys4130, 2019
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Universality class of the magnetic phase transition

Universality class is defined by two main parameters:

1. Spacial dimension, d
2. The dimension of the «order parameter», n

The Ising Hamiltonian Hy = —] ¥; jys;s; is invariant under spin reflection, s; —» —s;.
However, the mean magnetization is not invariant under spin transformation =
order parameter

(M) # 0 in the ferromagnetic phase

(M) = 0 in the paramagnetic phase



Ising universality class

Is characterized by:

1. Spacial dimension, d =3
2. The dimension of the scalar magnetic field, n = 1

The Ising universality class is characterized by the same critical exponents

the van der Waals fluids near the critical gas-liquid phase transition

Fys4130, 2019
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Mean field Ising universality class

Correspondence between magnetics and fluids

Volume, V' or density, p
Pressure, P

Gibbs free energy, G(P,T)

Mean magnetization, —M
Magnetic field, B
Gibbs free energy, G(B, T)

Compressibility, k7 = —%Z—Z Susceptibility, y = Z—IBW
ty, Co = T (2 o (%%
Heat capacity, Cp = —T (aTZ)p Heat capacity, Cg = —T (aTZ)B
T Density (Order parameter) p(T,P.) ~ (T. — TP, Bur = %
Critical isotherm V(P,T,) ~P% Syr=23
Compressibility kKr(T) ~ |T. = T|7Y, vyur =
Heat capacity Co(T) ~|T,—T|™% ayr =

Fys4130, 2019
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Correspondence between magnetics and fluids

p (pCSTC) H
/ 0 pt
T F
T
v vapor M TiTEY

2-phase I
2-phase 0 coexistence |
coexistence | | T

I I

I TC
liquid :

I

11l
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Van der Waals fluids and their critical point (reminder...)

2
_ Di ) oor=o
H= sz+2u(rij),u(r) B {m(r),r >0

l

ij
2
Mean-field approximation: H = Zif—;n + Nu

Van-der-Waals equation of state

pkT 5
P = -
1—pb “p
Critical point: inflection point in the P — V diagram:
op_ 0P _
v - avz
a 8a 1

Fe

= o7p2 e = g7 Pe =3y
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Beyond the mean field approximation:
Monte Carlo simulation

 Sampling equilibrium spin configurations in the canonical ensemble

through Metropolis algorithm

* Metropolis rule for the transition probability to go from /7
congifuration g = {s;} to another configuration ¢’ = {s;} \
7
1, AE<0 ~ >

Wiq-q)= {e—BAE AE > 0

Where E = —éZU’j)sisj is the energy of a N-spins configuration at B =

0



Metropolis Monte Carlo : Ising model

Peq(sk!) _ W(sk—sk) _
Peg(si)  W(sg—sk)

e Detailed balance:

s = +1

Metropolis rule for the transition probability

1, AE <0

W(Sk - S;() — {e—ﬁAE AE >0

* Pick a random spin s, and flip its value

stew — _s%4 and calculate the energy cost AE

« Accept the spin flit every time rand < e FAE

— e_ﬁAE’E —

J
— 3 (i) SiSj»




Metropolis Monte Carlo : Ising model
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