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Ising model for ferromagnets

A system of N spins !" = ±1 on a periodic lattice and in a uniform 
magnetic field &. Spins interact with their nearest neighbor on the lattice
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Ø J > 0 is the coupling constant, such that the energy is minimized when

neighboring spins point in the same direction

Ø Summation over the nearest neighbors (n.n.) j atoms that are coupled to the ith

atom on a crystal lattice (short hand notation used sometime ≡ ij ) 

Ø The form of the spin-spin interaction as −*!"!, originates the Coulomb interactions

between the electrons (spin carriers); magnetic dipole interactions are too weak.  
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Ising model for ferromagnets

A system of N spins !" = ±1 on a periodic lattice and in a uniform 
magnetic field &. Spins interact with their nearest neighbor on the lattice
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• Ising model exhibits a critical phase transition at a finite tempeture
78 and applied field & = 0

• The properties of this ferromagnetic phase transition can be studied
within the mean-field approximation
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1D Ising model: No phase transition
At any nonzero temperature, it is energetically favorable to create
defects (kinks) due to thermal fluctuations

Change in energy for flipping a spin (kink in the ordered state) 
!" = −%& '()*( , !, = − % − 2 & + 2& (012ℎ 4 5165) → Δ! = 4&

Change in entropy for flipping a spin anywhere in the 1D chain (N sites) 
Δ; = 5 log%

The spin flipping due to thermal fluctuations is favored when it lowers the Helmholtz free energy

Δ? = Δ! − @Δ; < 0 → & − 5@ log% < 0

This is always satisfied at any T > 0, hence the spin order is spontaneously broken by 
kinks due thermal fluctuations.
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Ising model for ferromagnetism
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Critical phase transition occurs at a unique point in the ! − # diagram: (!% = 0, #%)

Q: How do we theoretically predict this critical point and the behavior near it? 

A:  Mean-field approximation, Landau field theory, renormalization group techniques

# < #+ # ≲ #+ # > #+



Ising model for ferromagnetism
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The critical temperature !" can be estimated in the mean-field approximation

2D Exact solution given by Onsager (tour de force!)  
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Weiss mean-field theory
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• We assume that each spin interacts on average in the same with its neighbors
regardless of its spin value. This means that we can replace the neighboring spin )( by 
some mean magnetization + small fluctuations around it 
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• Such that the Hamiltonian reads now as
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• Mean-field approximation:  Ignore the effect of fluctuations around the mean field

! = −∑' )'*=>>, where *=>> = * + ?%4, ? = 2A

Self-consistent equation: the mean field B must the same as the average 
magnetization per spin B ≡ ⟨C⟩

? is the coordination number; ? = 2A for a 
square lattice (? = 4 in 2D, ? = 6 in 3D)

)F ?%4

)F
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)G
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Self-consistent equation
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Mean-field Hamiltonian looks like that for a paramagnetic system, except that the
effective magnetic field has a contribution from the mean field

!" = −%
&

'&()** , ()** = ( + -./, '& = ±1

• One-spin partition function
23 = 45(789:;) + 4=5 789:; = 2 cosh C ( + -./

• Mean magnetization per spin must be the same as the mean field

/ = ' =
1
C
D ln 23
D()**

→ / = tanh C ( + -./

(transcendental equation, not easy to solve analytically; so we look for asymptotic solutions)
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Self-consistent equation

9

• Limit of ! = 0

$ = %&'( )*$
+,

• solved graphically by looking at the intersection points between
the diagonal curve and the tanh(2)

Critical temperature: ,4 = )*
+

$ = %&'( ,4
, $

• For 5 > 57, there is only one root at 8 = 0
• For 5 < 57, there are three roots at 8 = 0,±8<(5)
• The non-zero solutions depend on the temperature below 57
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Self-consistent equation
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• Low temperature near T", $ ≤ $&, ' (')**

+ = -./0
12

1
+ (4)

• For small',	use the Taylor	expansion of -./0(F)

+ ≈
12

1
+−

4

I

12
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I
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To find the dependence of the roots 'J($) on temperature

'J $ = ± 3
$

$&
1 −

$

$&

N
O

Solution	valid	only very close to	the critical temperature

'J($) is otherwise the numerical solution of eq. (1)

Fys4130, 2019



Self-consisten equation
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|"#| = 3 &
&'

(
) 1 − &

&'
,/)

Critical exponent .: 

|/0| ∼ 23 − 2 4

456 =
7
8
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Mean magnetization for ! ≠ 0
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$ = tanh * ! + ,-$ (1)

• 1 ≤ 13, $ 5$677; Weak	applied field,	! such that we Taylor 
expand the tanh

$ ≈ * ! + ,-$ −
1
3
*E ! + ,-$ E

$ ≈
!
F1

+
13
1
$ −

1
3
13
1

E

$E

!
F1

≈
1
3
13
1

E
$E + 1 −

13
1

$

• At the critical temperature 1 ≈ 13,
!
F13

≈
1
3
$E → |I| ≈ J

K
L

• Critical exponent:  MNO = 3
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Numerical solution of eq. (1)



Mean magnetization for ! ≠ 0
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Inflection point at $ = $& and ! = 0, 
where ' = ()

(* → ∞

!
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- = tanh 2 ! + 45-

• $ ≤ $&, - 8-9::; Weak	applied field,	! such that we Taylor 
expand the tanh

- ≈ 2 ! + 45- −
1
32

I ! + 45- I

- ≈
!
J$ +
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$ - −
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• At the critical temperature $ ≈ $&,
!
J$&

≈
1
3-

I → |L| ≈ M
N
O

• Critical exponent:  PQR = 3



Susceptibility near critical point
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• Near the critical point ! ≈ !#
$
%! ≈

1
3
!#
!

(
)( + 1 − !#! ),

-(!) = 1$
1) 2

34
= %! !#

!
(
)56 + %! 1 − !#!

34

)56 = 7
0, ! ≳ !#
3 2

2:
( 2:

2 − 1 , ! ≲ !#

Critical exponent < near the phase transition

= = > % !# − ! 34, ! ≳ !#
2% ! − !# 34, ! ≲ !#

= ∼ AB − A 3C, CDE = F

Curie-Weiss law
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Gibbs free energy minimized by ±"#
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$% = −(∑ *+ ,*,+ − ∑* ,*- , replace the spins by	 ,* = " + (,* − ")

$% = @(A "B − - + 2@(" D

*

,* → FG = HIJ%KLM
N
2 cosh(P(2@(" + -))

Gibbs free energy
Q -, R = −ASR ln FG

Q -, R

A
=
S RT

2
"B − SR ln 2 cosh

RT

R
" +

-

SR

• Low temperature R < RT, - = 0

Gibbs free energy per spin at zero applied field

W X,Y =
Z X,Y

[
≈ −]^ _` a +

]^b

a
c −

^b

^
Ya +

]^b
d

ca^e
Yd

has two minima corresponding to ±"#(R) for R < RT
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Heat capacity
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• Low temperature ! < !#, % = 0

( 0,)(!) ≈ −./ − .0)1 + .1)3, )(!) ≈ !# − ! 0/1

Heat capacity measured the heat exchange per temperature increase

56 = !
78
7! 6

= −!
71(
7!1

6

56 ∼ −!)′
7
7)

)′
7(
7)

∼ −!
1
)

7
7)

1
)

−2.0) + 4.1)> ∼ ?@ABC

Critical exponent D at  ! ≈ !# and  % = 0

EF ≈ G − G? H

H IJ = K
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Critical exponents for the magnetic phase transition
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Mean-field universality class
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Order parameter                 !(#, % = 0) ∼ #* − # ,, -./ = 0
1

Critical isotherm M(#*, %) ∼ |%|4, 5./ = 3
Susceptibility 7(#, % = 0) ∼ |#* − #|89, :./ = 1
Heat capacity <=(#, % = 0) ∼ |#* − #|8>, ?./ = 0

Exponent 2D 3D Mean field
? 0 0.11 0
- 1/8 0.32 1/2
: 7/4 1.24 1
5 15 4.90 3



Universality class of the magnetic phase transition

18

Universality class is defined by two main parameters: 

1. Spacial dimension, d 
2. The dimension of the «order parameter», n

The Ising Hamiltonian !" = −% ∑⟨(,*⟩ ,(,* is invariant under spin reflection, ,( → −,(.  
However, the mean magnetization is not invariant under spin transformation = 
order parameter 

. ≠ 0 in the ferromagnetic phase

. = 0 in the paramagnetic phase
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Ising universality class
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Is characterized by: 

1. Spacial dimension, ! = #
2. The dimension of the scalar magnetic field, $ = %

The Ising universality class is characterized by the same critical exponents
the van der Waals fluids near the critical gas-liquid phase transition
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Mean field Ising universality class
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Correspondence between magnetics and fluids

Gas-Liquid Magnets

Volume, ! or density, " Mean magnetization, −$

Pressure, % Magnetic field, &

Gibbs free energy, '(%, *) Gibbs free energy, '(&, *)

Compressibility, ,- = −
/

0

10

12
Susceptibility, 3 = 14

15

Heat capacity, 62 = −*
178

1-7 2
Heat capacity, 65 = −*

178

1-7 5
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Density (Order parameter)    "(*, %9) ∼ *9 − *
;, <4= =

/

>

Critical isotherm !(%, *9) ∼ %?, @4= = 3
Compressibility ,-(*) ∼ |*9 − *|

CD, E4= = 1
Heat capacity 62(*) ∼ |*9 − *|

CG, H4= = 0
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Correspondence between magnetics and fluids
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Van der Waals fluids and their critical point (reminder...)
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%$&
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$*

+(-$*) , + - = 0
∞, - ≤ 3

+4 - , - > 3

Mean-field approximation: ! = ∑$
78
9

&: +;+

Van-der-Waals  equation of state

< =
=>?
1 − =B

− C=&

Critical point: inflection point in the < − D diagram: 

E<
ED = 0,

E&<
ED& = 0

<G =
C

27B& , ?G =
8C
27B , =G =

1
3B
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Beyond the mean field approximation:
Monte Carlo simulation
• Sampling equilibrium spin configurations in the canonical ensemble 

through Metropolis algorithm

• Metropolis rule for the transition probability to go from 

congifuration ! = {$%} to another configuration !′ = {$%′}

( ) → )+ = ,1, ΔE ≤ 0
34567, Δ8 > 0 ,

Where 8 = − ;
<∑⟨%,?⟩ $%$? is the energy of a N-spins configuration at A =

0

!

!+

!+

!+
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Metropolis Monte Carlo : Ising model

• Detailed balance: !"# $%&!"# $%
= ( $%→$%

*

( $%
* →$%

= "+,-., 0 = − 2
3
∑⟨6,7⟩ 9697 ,

9 = ±1

Metropolis rule for the transition probability

( $% → $%& = <
1, Δ0 ≤ 0
@+ABC, Δ0 > 0

• Pick a random spin $% and flip its value

$%E"F = −$%GHI and calculate the energy cost Δ0

• Accept the spin flit every time rand < @+ABC

Δ0
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Δ0 = −O Δ9P Q
7RS.S.(P)
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Metropolis Monte Carlo : Ising model
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