Lecture 25

Module VI
03.05.2019
Random walk, Central limit theorem

Overview

- What is a random walk

- Universality of the Gaussian distribution: Central limit theorem or the «law of large numbers»

Random walk

- Random collision between particles in an ideal gas means that on lenghscales larger than the mean free path, the trajectory of a particle is a random meandering also called thermal motion
- Microscopic stochastic model for particle dynamics due to thermal motion in an ideal gas
- Each particle has a given probability to be within a small interval around a position r at time t, $P(r, t) d r$ where $P(r, t)$ is the Gaussian probability distribution function

1D Random walk (RW)

- Random motion on a line
- Discrete time steps $N=0,1,2 \cdots$ in units of $\Delta t=1$

- Discrete space: lattice index $j=0, \pm 1, \pm 2 \backslash$ cdots with increments $\Delta x=1$
- At each timestep, the walker has probability p to the right $j \rightarrow j+1$ and probability $q=1-p$ to the left $j \rightarrow j-1$

What is the mean displacement $\langle S\rangle(N)$ of the RW after N steps?
What is the mean square displacement $\left\langle(\Delta S)^{2}\right\rangle(N)$ of the RW after N steps?
What is the probability distribution for a displacement S after N steps, $P_{N}(S)$?

Bernoulli distribution

After N steps, the RW has made R steps to the right and L steps to the right, so

$$
R+L=N, \quad S=R-L
$$

- Probability for R independent steps to the right out of N steps is given by the probability for a configuration with R out N steps, $p^{R}(1-p)^{N-R}$, times the number of possible configurations $\frac{N!}{R!(N-R)!}$

$$
F_{N}(R)=\frac{N!}{R!(N-R)!} p^{R} q^{N-R} \quad \text { (Bernoulli distribution) }
$$

Probability $F_{N}(R)$ is normalized: The probability for N steps (irrespective of right or left direction) is 1

$$
\sum_{R=1}^{N} F_{N}(R)=\sum_{R=1}^{N} \frac{N!}{R!(N-R)!} p^{R} q^{N-R}=(p+q)^{N}=1
$$

Average displacement is zero

$$
q=1-p
$$

- Average number of steps to the right $\langle R\rangle=N p$

$$
\begin{gathered}
\langle R\rangle=\sum_{R=1}^{N} R F_{N}(R)=\sum_{R=1}^{N} \frac{N!}{R!(N-R)!} R p^{R} q^{N-R} \\
\text { (use that } \left.R p^{R}=p \frac{d}{d p} p^{R}\right) \\
\langle R\rangle=p \frac{d}{d p} \sum_{R=1}^{N} \frac{N!}{R!(N-R)!} p^{R} q^{N-R}=p \frac{d}{d p}(p+q)^{N}=p N(p+q)^{N-1}=N p
\end{gathered}
$$

- Average displacement from the origin is $\langle S\rangle=0$. Not an efficient way to walk.

$$
\begin{aligned}
\langle S\rangle & =\langle R\rangle-(N-\langle R\rangle)=2\langle R\rangle-N \\
\langle S\rangle=N(2 p-1) & =N(p-q), \quad \text { for } p=q=\frac{1}{2} \rightarrow\langle S\rangle=0
\end{aligned}
$$

Mean square displacement

Probability for R steps to the right out of N steps $F_{N}(R)=\frac{N!}{R!(N-R)!} p^{R} q^{N-R}$

$$
\begin{gathered}
\left\langle R^{2}\right\rangle=\sum_{R=1}^{N} R^{2} P_{N}(R)=\sum_{R=1}^{N} \frac{N!}{R!(N-R)!} R^{2} p^{R} q^{N-R} \\
\left(\text { use that } R^{2} p^{R}=\left(p \frac{d}{d p}\right)^{2} p^{R}\right) \\
\left\langle R^{2}\right\rangle=\left(p \frac{d}{d p}\right)^{2} \sum_{R=1}^{N} \frac{N!}{R!(N-R)!} p^{R} q^{N-R}=\left(p \frac{d}{d p}\right)^{2}(p+q)^{N}=N p \frac{d}{d p}\left[(p+q)^{N-1}\right] \\
\left\langle R^{2}\right\rangle=N p+N(N-1) p^{2}
\end{gathered}
$$

Mean square displacement

$$
\left\langle R^{2}\right\rangle=N p+N(N-1) p^{2}, \quad\langle R\rangle=N p
$$

$\left\langle S^{2}\right\rangle=\left\langle(2 R-N)^{2}\right\rangle=4\left\langle R^{2}\right\rangle-4 N\langle R\rangle+N^{2}=N^{2}(p-q)^{2}+4 N p q$
Mean square dislacement: $\left\langle\Delta S^{2}\right\rangle=\left\langle S^{2}\right\rangle-\langle\mathrm{S}\rangle^{2}$

$$
\left\langle\Delta S^{2}\right\rangle=4 N p q,
$$

For an unbias walk $p=q=\frac{1}{2} \rightarrow\left\langle\Delta S^{2}\right\rangle=N$, the mean square displacement increases linearly with the total number of steps.

Bottom line: the walker does not go anywhere on average since $\langle S\rangle=0$, but the area of its meandering around the origin increases proportial to the number of steps, $\left\langle\Delta S^{2}\right\rangle=N$.

Displacement probability $P_{N}(S)$

Bernoulli distrubution:

Probability for R steps to the right out of N steps for $p=q=\frac{1}{2}$

$$
F_{N}(R)=\frac{N!}{R!(N-R)!} \frac{1}{2^{N}}
$$

Using Stirling approx: $n!=\sqrt{2 \pi n} n^{n} e^{-n}$

$$
F_{N}(R)=\sqrt{\frac{N}{2 \pi R(N-R)}} e^{N \log N-R \ln (R)-(N-R) \ln (N-R)-N \log 2}=\sqrt{\frac{N}{2 \pi R(N-R)}} e^{-R \log \left(\frac{2 R}{N}\right)-(N-R) \ln \left(\frac{2(N-R)}{N}\right)}
$$

Change of variables $P_{N}(S) d S=F_{N}(R) d R$

$$
P_{N}(S)=\frac{1}{2} F_{N}\left(\frac{N+S}{2}\right)=\frac{1}{2} \sqrt{\frac{2 N}{\pi\left(N^{2}-S^{2}\right)}} e^{-\frac{N+S}{2} \log \left(1+\frac{S}{N}\right)-\frac{N-S}{2} \log \left(1-\frac{S}{N}\right)}
$$

Gaussian distribution $P_{N}(S)$

Probability for a net displacement S

$$
\begin{gathered}
P_{N}(S)=\sqrt{\frac{N}{2 \pi\left(N^{2}-S^{2}\right)}} e^{-\frac{N+S}{2} \log \left(1+\frac{S}{N}\right)-\frac{N-S}{2} \log \left(1-\frac{S}{N}\right)} \\
\log \left(1+\frac{S}{N}\right) \approx \frac{S}{N}-\frac{1}{2}\left(\frac{S}{N}\right)^{2}, \quad \log \left(1-\frac{S}{N}\right) \approx-\frac{S}{N}-\frac{1}{2}\left(\frac{S}{N}\right)^{2} \\
P_{N}(S)=\sqrt{\frac{1}{2 \pi N}} e^{-\frac{S}{2}\left(1+\frac{S}{N}\right)\left(1-\frac{1 S}{2 N}\right)+\frac{S}{2}\left(1-\frac{S}{N}\right)\left(1+\frac{1 S}{2 N}\right)}=\sqrt{\frac{1}{2 \pi N}} e^{-\frac{S}{2}\left(1+\frac{S}{2 N}\right)+\frac{S}{2}\left(1-\frac{S}{2 N}\right)} \\
P_{N}(S)=\sqrt{\frac{1}{2 \pi N}} e^{-\frac{S^{2}}{2 N}}
\end{gathered}
$$

Mean $\langle S\rangle=0$
Standard deviation $\left\langle(\Delta S)^{2}\right\rangle=N$

$$
P_{N}(S)=\sqrt{\frac{1}{2 \pi\left\langle\Delta S^{2}\right\rangle}} e^{-\frac{(S-\langle S\rangle)^{2}}{2\left\langle\Delta S^{2}\right\rangle}}
$$

Continuous space-time RW

RW displacememt is the position $\mathrm{X}=S \Delta x$ the continuous line
Number of steps determine the time $t=N \Delta t$

Probability distribution to find the RW at a give position x at time t :

$$
\begin{aligned}
& P(x, t) d x=P_{N}(S) d S \rightarrow P(x, t)=P_{\frac{t}{\Delta t}}(X / \Delta x) \frac{1}{\Delta x} \\
& P(X, t)=\sqrt{\frac{\Delta x^{2}}{2 \pi\left\langle\Delta X^{2}\right\rangle}} e^{-\frac{(X-\langle X\rangle)^{2}}{2\left\langle\Delta X^{2}\right\rangle}} \frac{1}{\Delta x}, \quad \int_{-\infty}^{+\infty} d X P(X, t)=1, \text { at any } t
\end{aligned}
$$

$$
\text { Mean displacement }\langle X\rangle=\Delta x\langle S\rangle
$$

$$
\text { Standard deviation }\left\langle(\Delta X)^{2}\right\rangle=\Delta x^{2}\left\langle(\Delta S)^{2}\right\rangle
$$

Gaussian distribution

Probability distribution to be within an internal of width $2 \Delta x$ around X and t

$$
P(X, t)=\sqrt{\frac{1}{2 \pi\left\langle\Delta X^{2}\right\rangle}} e^{-\frac{(X-\langle X\rangle)^{2}}{2\left\langle\Delta X^{2}\right\rangle}}
$$

Mean displacement $\langle X\rangle=v t$, where $v=(p-q) \frac{\Delta x}{\Delta t}$
drift velocity

Standard deviation $\left\langle(\Delta X)^{2}\right\rangle=2 D t$, where $D=2 p q \frac{\Delta x^{2}}{\Delta t}$
diffusion coefficient

Gaussian distribution

Probability distribution for RW with drift velocity v and diffusion coefficient D

$$
P(X, t)=\sqrt{\frac{1}{4 \pi D t}} e^{-\frac{(X-v t)^{2}}{4 D t}}, \quad \int_{-\infty}^{+\infty} d X P(X, t)=0
$$

Mean displacement $\langle X\rangle=\int_{-\infty}^{+\infty} d X X P(X, t)=v t$

Standard deviation $\left\langle(\Delta X)^{2}\right\rangle=\int_{-\infty}^{+\infty} d X(X-v t)^{2} P(X, t)=2 D t$

Continuous time-space RW

Probability distribution for RW with constant drift velocity v and diffusion coefficient D

$$
P(X, t)=\sqrt{\frac{1}{4 \pi D t}} e^{-\frac{(X-v t)^{2}}{4 D t}}
$$

RW simulations

2D

3D

Central limit theorem: Limit distribution of sums

Suppose we have a set of N independent, identically distributed (i.i.d.) variables x_{i} drawn from the same parent distribution $p\left(x_{i}\right)$ with

1. Zero mean $\int d x x p(x)=\langle x\rangle=0$
2. Finite variance $\int d x x^{2} p(x)=\sigma^{2}<\infty$

The sum of N variables $X=\sum_{i=1}^{N} x_{i}$ is also a stochastic quantity which, in the limit of $N \gg 1$, is distributed according to the Gaussian distribution independent of the parent distributions $\boldsymbol{p}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$

Application to the RW

x_{i} are the independent random increments drawn from the same uniform distribution $p\left(x_{i}\right)$ (prob for an increment)

The sum of N increments is the net displacement

$$
X(N)=\sum_{i=1}^{N} x_{i}
$$

Central limit theorem gives us the limit distribution of displacement X regardless of the distribution of individual increment

$$
X(N) \rightarrow_{N \gg 1} \text { is Gaussian distribution }
$$

Central limit theorem: Proof using the characteristic function

Probability density $P_{N}(X)$ for the sum of random variables

$$
\begin{equation*}
X=\sum_{i=1}^{N} x_{i} \tag{1}
\end{equation*}
$$

depends on the product of the probability density for i.i.d. random variable, i.e. $\prod_{i=1}^{N} p\left(x_{i}\right)$ with the constraint that their sum is given by Eq. (1)

$$
P_{N}(X)=\int d x_{1} \cdots d x_{N} p\left(x_{1}\right) \cdots p\left(x_{N}\right) \delta\left(X-\sum_{i=1}^{N} x_{i}\right)
$$

Method of chacteristic function

Fourier transform of $P_{N}(X)$ defines the characteristic function

$$
\begin{gathered}
\hat{P}(k)=\frac{1}{2 \pi} \int d X e^{-i k X_{P}(X)} \\
\hat{P}(k)=\frac{1}{2 \pi} \int d X e^{-i k X} \int d x_{1} \cdots d x_{N} p\left(x_{1}\right) \cdots p\left(x_{N}\right) \delta\left(X-\sum_{i=1}^{N} x_{i}\right) \\
\hat{P}(k)=\frac{1}{2 \pi} \int d x_{1} \cdots d x_{N} p\left(x_{1}\right) \cdots p\left(x_{N}\right)\left(\int d X e^{-i k x^{\prime}} \delta\left(X-\sum_{i=1}^{N} x_{i}\right)\right) \\
\hat{P}(k)=\frac{1}{2 \pi} \int d x_{1} \cdots d x_{N} p\left(x_{1}\right) \cdots p\left(x_{N}\right) e^{-i k \sum x_{i}} \\
\hat{P}(k)=\frac{1}{2 \pi}\left(\int d x_{1} p\left(x_{1}\right) e^{-i k x_{1}}\right) \cdots\left(\int d x_{N} p\left(x_{N}\right) e^{-i k x_{N}}\right)
\end{gathered}
$$

Chacteristic function

$$
2 \pi \hat{P}(k)=\left(\int d x p(x) e^{-i k x}\right)^{N}=(2 \pi \hat{p}(k))^{N}
$$

We Taylor expand $e^{-i k x}$ since the wavenumber k scales as $1 / N$ as being the reciprocal of $X(\mathrm{~N})$. Hence,

$$
\hat{p}(k)=\frac{1}{2 \pi} \sum_{n} \frac{(-i k)^{n}}{n!} \int d x p(x) x^{n}
$$

Characteristic function of the parent distribution can be written as a power series of its moments

$$
\hat{p}(k)=\frac{1}{2 \pi} \sum_{n} \frac{(-i k)^{n}}{n!}\left\langle x^{n}\right\rangle
$$

Asymptotic behavior in the limit of large N

$$
\begin{array}{r}
\hat{p}(k)= \\
\frac{1}{2 \pi} \sum_{n} \frac{(-i k)^{n}}{n!}\left\langle x^{n}\right\rangle \approx \frac{1}{2 \pi}\left(1-\frac{k^{2}}{2} \sigma^{2}\right), \text { since } k \sim \frac{1}{N} \text { is small } \\
\text { k is the wavenumver associated with } X \text { from }\left(e^{i k x}\right) ; X=\sum_{i=1}^{N} x_{i} \sim N \rightarrow k \sim \frac{1}{N} \\
q=N k \\
\quad 2 \pi \hat{P}\left(\frac{q}{N}\right)=\left(2 \pi \hat{p}\left(\frac{q}{N}\right)\right)^{N} \approx\left(1-\frac{(q \sigma)^{2}}{2 N^{2}}\right)^{N} \rightarrow_{N \gg 1} e^{-\frac{q^{2} \sigma^{2}}{2 N}}
\end{array}
$$

Central limit theorem:

$$
\begin{aligned}
& 2 \pi \hat{P}(k) \rightarrow_{N \gg 1} e^{-\frac{k^{2} N \sigma^{2}}{2}} \\
& P(X)=\int d k e^{i k X} \hat{P}(k) \approx \frac{1}{2 \pi} \int d k e^{i k X} e^{-\frac{k^{2} N \sigma^{2}}{2}} \\
& P(X)=\frac{1}{2 \pi} \int d k e^{i k X-k^{2} \frac{N \sigma^{2}}{2}} \\
& \begin{aligned}
\text { Complete the square } & e^{i k x-k^{2} \frac{N \sigma^{2}}{2}}
\end{aligned}=e^{-\left(k^{2} \frac{N \sigma^{2}}{2}-2\left(k \sqrt{\frac{N \sigma^{2}}{2}}\right)\left(i x \sqrt{\frac{1}{2 N}}\right)-x^{2} \frac{1}{2 N \sigma^{2}}\right)} e^{-\frac{x^{2}}{2 N \sigma^{2}}}
\end{aligned}
$$

Central limit theorem: law of large number

$$
P(X)=\sqrt{\frac{1}{2 \pi N \sigma^{2}}} e^{-\frac{X^{2}}{2 N \sigma^{2}}}
$$

With

$$
\begin{gathered}
\int d X X P(X)=0 \\
\left\langle X^{2}\right\rangle=\int d X X^{2} P(X) \\
\left\langle X^{2}\right\rangle=N \sigma^{2}
\end{gathered}
$$

- Gaussian distribution captures universal fluctuations about a mean
- As N increases the sample mean approachs the gaussian mean
- Any probability distribution can be approxiated near its mean by a Gaussian distribution

