Lecture 25

Module VI
03.05.2019

Random walk, Central limit theorem



Overview

e What is a random walk

* Universality of the Gaussian

distribution: Central limit theorem or
the «law of large numbers»

P(x,t)
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Random walk

* Random collision between particles in an ideal gas
means that on lenghscales rarger than the mean free
path, the trajectory of a particle is a random
meandering also called thermal motion

* Microscopic stochastic model for particle dynamics
due to thermal motion in an ideal gas

 Each particle has a given probability to be within a
small interval around a position 7 at time ¢,
P(r,t)dr where P(r,t) is the Gaussian probability
distribution function

......




1D Random walk (RW) ¢=1-p P

« Random motion on a line - m

j+1

* Discrete time steps N = 0,1,2 - in units of At =1
* Discrete space: lattice index j = 0,+1, +2\cdots with increments Ax = 1

* At each timestep, the walker has probability p to the right j — j + 1
and probability g =1 —ptotheleftj - j—1

What is the mean displacement (S)(N) of the RW after N steps?
What is the mean square displacement ((45)?)(N) of the RW after N steps?

What is the probability distribution for a displacement S after N steps, Py (5)?
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Bernoulli distribution (\n

After N steps, the RW has made R steps to the right and L steps to the right, so
R+ L =N, S=R-1L

* Probability for R independent steps to the right out of N steps is given by the probability for a

configuration with R out N steps, p®(1 —p)"~R, times the number of possible configurations ak
g P P 9 RI(N-R)!
Fy(R) = R!(;ViR)!quN‘R (Bernoulli distribution)

Probability Fy(R) is normalized: The probability for N steps (irrespective of right or left direction) is 1

N N

N!
2 Fy(R) = z RTCN — R)!quN‘R =@+ =1
R=1 R=1



Average displacement is zero f\m

» Average number of steps to the right (R) = Np

N!

N N
(R)= ) RFy(R) = A R
= R=1

d
use that RpR = p—pR>
< dp

d
(Ry=p ZR,(N R), =p%(p+q)”=pN(p+q)N‘1=Np

» Average displacement from the origin is (S) = 0. Not an efficient way to walk.

(S)=(R)=(N—(R)) = 2(R) =N .
($)=NCp-1)=Np-aq, forp=qg=75-(5)=0
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Mean square displacement f\m

j—1

N! R, N—R
R!(N—R)!p q

Probability for R steps to the right out of N steps Fy(R) =

N N
N!
RZ =zR2P R =z RZRN—R
R=1 R=1

d 2
(use that R*p® = (p d_p> pR>

N! d\° d
(R?) = (p@) z RN = R)!quN‘R = (p @) +" = No o [(0 + V7]

(R*) = Np + N(N — 1)p?
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Mean square displacement (\m

j—1
(R*) =Np+ N(N — Dp?, (R) = Np

(5?) = ((2R — N)?) = 4(R?) — 4N(R) + N* = N*(p — q)* + 4Npq
Mean square dislacement: (AS?) = (§%) — (S)?
(45%) = 4Npq,

For an unbias walk p = ¢ = % — (AS*) = N, the mean square displacement increases linearly with the
total number of steps.

Bottom line: the walker does not go anywhere on average since (S) = 0, but the area of its
meandering around the origin increases proportial to the number of steps, (45%) = N.



Displacement probability P, (S) (5\

Bernoulli distrubution: j—1 j j+1
Probability for R steps to the right out of N steps for p = g = %
Fu(R) = N! 1
N T RI(N - R)I2N
Using Stirling approx: n! = v2ann"e™
Fy(R) = N N log N-R In(R)~(N—R) In(N-R)-N log 2 _ N ok 108(%)‘(’\"1?) 1“(%)
N 2nR(N — R) 2nR(N — R)
2R=N+S
Change of variables Py (S)dS = Fy(R)dR
1 N+S 1 2N NS (143 NS 0o(1-3
Pu(s) = 3 (55 = Ejn(zvz e 7 T
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Gaussian distribution Py (S)

Probability for a net displacement S

os(1+3)~5-2(3) . tes(1-3)=—5-2(3)
TN v 2w/ U TN/ TN T2

us) = [ e S0 _ [ 0e540-59)
1 _s
Py(S) = ne
Mean (S) = 0

Standard deviation ((AS)?) = N

_(5=(s)?
e 2(AS?)

Pn(S) = 2m(AS?)
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2Ax

Continuous space-time RW o o
—A
RW displacememt is the position X = SAx the continuous line

Number of steps determine the time t = NAt

Probability distribution to find the RW at a give position x at time t:

P(x,t)dx = Py(§)dS - P(x,t) = Pi(X/Ax)A_lx

At
A2 (=) 4 +00
P(X,t) = 2{AX°) — dX P(X,t) =1,at t
(%, 6) N2n(AX2>e Ax - (X,t) = 1,at any

Mean displacement (X) = Ax(S)
Standard deviation ((AX)?) = Ax?{(AS)?)

x+Ax



Gaussian distribution P S °

Probability distribution to be within an internal of width 2Ax around
X andt

1 _(X—(Xg)2
P(X,t) = e 2(AX<)
(X, 0) 2m(AX?)
\
Mean displacement (X) = vt, wherev = (p — q)i—: drift velocity

Ax?

Standard deviation ((AX)?) = 2Dt, where D = 2pq - diffusion coefficient



2Ax
Gaussian distribution P S °

X+Ax

X—Ax

Probability distribution for RW with drift velocity v and diffusion coefficient D

1 _(X-vt)*

+00
e 4Dt j dX P(X,t) =0

P(X,t) = AtDt ’

Mean displacement (X) = f:: dX XP(X,t) = vt

Standard deviation ((AX)?) = [*dX (X — vt)?>P(X,t) = 2Dt



Continuous time-space RW P 0 o

Probability distribution for RW with

constant drift velocity v and diffusion
coefficient D

1 _ (X-vt)?

P(X,t) = o 4Dt
N

P(x,t)
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Central limit theorem: Limit distribution of sums

Suppose we have a set of N independent, identically distributed (i.i.d.) variables x; drawn from
the same parent distribution p(x;) with

1. Zeromean [dxxp(x)={(x)=0

2. Finite variance [ dx x?p(x) = 0% < o

The sum of N variables X = Y, x; is also a stochastic quantity which, in the limit of N > 1, is
distributed according to the Gaussian distribution independent of the parent distributions p(x;)



Application to the RW

x; are the independent random increments drawn from the same uniform distribution p(x;) (prob
for an increment)

The sum of N increments is the net displacement

N

X(N) = z x;

i=1

Central limit theorem gives us the limit distribution of displacement X regardless
of the distribution of individual increment

X(N) >ys1 is Gaussian distribution



Central limit theorem:
Proof using the characteristic function

Probability density Py (X) for the sum of random variables
X =Xi=1% (1)

depends on the product of the probability density for i.i.d. random variable, i.e.
[T. p(x;) with the constraint that their sum is given by Eq. (1)

N
Py(X) = fdx1 e dxy p(xg) - plxy)d (X —zxi>

=1



Method of chacteristic function

Fourier transform of Py(X) defines the characteristic function

. 1 .
P(k) = > [ dXe ™Xpy(X)

N
~ 1 .
P(k) = EI dxe_lkxf dxy - dxy p(xq1) - p(xy)d (X — 2%’)

N
P(k) = %fdxl"'de p(xy) - pley) | | dxe ™5 (X —Zm)

Py

1 .
P(k) = Ef dxy - dxy p(xy) - p(xy)e Herx

~ 1 : .
P(k) = E(‘[ dxlp(xl)e—lk.X1) (f dep(xN)e—lkxN)



Chacteristic function

21P(k) = (f dap()e=*)" = (2np(k))"

We Taylor expand e~* since the wavenumber k scales as 1/N as being the reciprocal of X(N). Hence,

n!

1 O (—ik)"
) = 5= O [ dxp(ar

Characteristic function of the parent distribution can be written as a power series of its moments

n

1 —ik)™
) = 5= > o (yemy



Asymptotic behavior in the limit of large N

lk)"

plk) = =%, =

k is the wavenumver associated with X from (e*% ); X = YN . x; ~
q = Nk
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2
(x™) ~—(1 —k?a ), since k ~Nis small

~Nok~-~
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Central limit theorem:

- _k?*Ng?
2P (k) >y»1 e 2

o 1 _ _k*No*
PX)= | dke‘kXP(k)zﬁ | dke*Xe™ 2

2

1 : >No
P(X) = — LkX—k 5
(X) = dke

No? 1 1 2

. k? ——2 k /—) lX/ -X? X

Complete the square e’ = 2 2No 2No® ) e "2Ng
ZNJ e 2Na

NO'2 2

< > 21 X

P(X) = —e ZNGZf dke 2No € 2Ng?
02
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Central limit theorem: law of large number

1 X2

P(X) = . SN e 2No?

With
[dXXPX)=0

(X?) = [dX X? P(X)
(X?) = No*

 Gaussian distribution captures universal fluctuations about a mean
* As N increases the sample mean approachs the gaussian mean
* Any probability distribution can be approxiated near its mean by a Gaussian distribution



