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Master equations for Gaussian and Poisson stochastic processes
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What is a master equation? 

• Describes the time evolution of the probability distribution
function for a stochastic process. Also called the rate equation

• Gaussian process – Random walker, Diffusion equation

• Poisson equation – Rate equation, Poisson distribution
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Random walker

• At 𝑁 + 1, we have two options: 

• RW takes a left jump 𝑚 + 1 → 𝑚
• RW takes a right jump 𝑚 − 1 → 𝑚

Particle stochastic dynamics

m()* = m( + Δ𝑥., Δx( = 1+1,with probability p−1,with probability 𝑞

3

𝑝 𝑞 = 1 − 𝑝

𝑚 + 1𝑚𝑚 − 1
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Master equation for a random walker (RW) 
Probability density that a RW is at position 𝑚 at time 𝑡 + Δ𝑡 depends only on the probability density at the
previous time 𝑡 and the jump probability per unit step (no memory). 

This means that the probability P(m, 𝑡 + Δ𝑡) that the RW is at position 𝑚 at time 𝑡 + Δ𝑡 depends on the
probabilities at the previous times step 𝑡 as: 

i) If nothing happens at position 𝑚, then the probability does not change equals P(m, 𝑡)

ii) If the RW was at 𝑚 − 1 and moves to the right or if jumps to the left from 𝑚 + 1, then we have a 
contribution

𝑝𝑃 𝑚 − 1, 𝑡 + 𝑞𝑃(𝑚 + 1, 𝑡)

iii) If it was at 𝑚 and moves either right or left, then the change in probability is proportional to
−𝑝𝑃 𝑚, 𝑡 − 𝑞𝑃 𝑚1, 𝑡 = −𝑃(𝑚, 𝑡)

Collecting all three possibilities, we can link the probabilities between successive timesteps as 
𝑃 𝑚, 𝑡 + Δ𝑡 = 𝑃 𝑚, 𝑡 + 𝑝𝑃 𝑚 − 1, 𝑡 + 𝑞𝑃 𝑚 + 1, 𝑡 − 𝑃(𝑚, 𝑡)

Hence the master equation is 
𝑷 𝒎, 𝒕 + 𝜟𝒕 = 𝒑𝑷 𝒎− 𝟏, 𝒕 + 𝒒𝑷 𝒎+ 𝟏, 𝒕
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Master equation
By Taylor expansion around 𝑡 and rearranging terms, we obtain:

𝜕𝑃(𝑚, 𝑡)
𝜕𝑡

=
𝑝
Δ𝑡

𝑃 𝑚 − 1, 𝑡 − 𝑃 𝑚, 𝑡 +
𝑞
Δ𝑡

𝑃 𝑚 + 1, 𝑡 − 𝑃 𝑚, 𝑡

Transition rates (hoping rates) for the right and left jumps  
𝑝
Δ𝑡
≡ 𝑤N←NP* = 𝑤N)*←N

𝑞
Δ𝑡
≡ 𝑤N←N)* = 𝑤NP*←N

𝜕
𝜕𝑡 𝑃 𝑚, 𝑡 = 𝑤N←N)*𝑃 𝑚 + 1, 𝑡 + 𝑤N←NP*𝑃 𝑚 − 1, 𝑡 − 𝑤NP*←N𝑃 𝑚, 𝑡 − 𝑤N)*←N𝑃 𝑚, 𝑡

𝜕𝑃(𝑚, 𝑡)
𝜕𝑡

=Q
.

[𝑤N←.𝑃 𝑛, 𝑡 − 𝑤.←N𝑃 𝑚, 𝑡 ]

Where 𝑤N←. are the transition rates from state 𝑛 to state 𝑚, satisfying that
Q
N

𝑤N←. = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛
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Diffusion equation

For continuous space and time, the master equation for the probability density becomes the diffusion
equation

𝜕𝑃(𝑚, 𝑡)
𝜕𝑡 =

𝑝
Δ𝑡 𝑃 𝑚 − 1, 𝑡 − 𝑃 𝑚, 𝑡 +

𝑞
Δ𝑡 𝑃 𝑚 + 1, 𝑡 − 𝑃 𝑚, 𝑡 (1)

We introduce 𝑥 = 𝑚Δ𝑥 as the RW position along the continuous line. In the limit of Δ𝑥 → 0, we Taylor expand
around 𝑥

𝑃 𝑥 ± Δ𝑥, 𝑡 − 𝑃 𝑥, 𝑡 ≈ ±Δ𝑥
𝜕𝑃
𝜕𝑥 +

Δ𝑥]

2
𝜕]𝑃
𝜕𝑥]

Hence Eq. (1) becomes
𝜕𝑃(𝑥, 𝑡)
𝜕𝑡

= −𝑣
𝜕𝑃(𝑥, 𝑡)
𝜕𝑥

+ 𝐷
𝜕]𝑃(𝑥, 𝑡)
𝜕𝑥]

𝑣 = 𝑝 − 𝑞 ab
ac

is the drift velocity for a biased RW

𝐷 = abd

]ac
is the diffusion coefficient of the RW determined by the microscopic variables (stepsize and time interval).  
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Diffusion equation in 1D: 𝑣 = 0
ef(b,c)
ec

= 𝐷 edf(b,c)
ebd

, with initial condition 𝑃 𝑥, 𝑡 = 𝛿 𝑥 (1)

Can be solved by Fourier transform h𝑃 𝑘, 𝑡 = ∫ 𝑑𝑘 𝑒mnb𝑃 𝑥, 𝑡 → h𝑃 𝑘, 0 = 1. Apply FT to  
Eq. (1)

𝑑 h𝑃(𝑘, 𝑡)
𝑑𝑡

= −𝐷𝑘] h𝑃 𝑘, 𝑡 → h𝑃 𝑘, 𝑡 = h𝑃 𝑘, 0 𝑒Pondc

By Inverse FT 
𝑃 𝑥, 𝑡 =

1
2𝜋

∫ 𝑑𝑘 𝑒Pmnb h𝑃 𝑘, 𝑡

Gaussian probability distribution function

𝑃 𝑥, 𝑡 =
1
4𝜋𝐷𝑡

𝑒P
bd
roc

7

Gaussian PDF

𝑷 𝒙, 𝒕 =
𝟏
𝟐𝝅𝝈𝟐

𝒆P
(𝒙P𝝁)𝟐
𝟐𝝈𝟐

Has two parameters: mean
𝝁 and standard deviation 𝝈
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Diffusion equation: mean dislacement

𝜕𝑃(𝑥, 𝑡)
𝜕𝑡 = 𝐷

𝜕]𝑃(𝑥, 𝑡)
𝜕𝑥]

Average displacement is calculated as the first moment of the

PDF 

𝜇 = 𝑥 (𝑡) = ∫ 𝑑𝑥 𝑥 𝑃(𝑥, 𝑡)

The evolution of the average displacement can be determined

from the diffusion equation as 

𝑑
𝑑𝑡 𝑥 = ∫ 𝑑𝑥 𝑥

𝜕𝑃 𝑥, 𝑡
𝜕𝑡 = 𝐷∫ 𝑑𝑥 𝑥

𝜕]𝑃 𝑥, 𝑡
𝜕𝑥] = 0

𝜇(𝑡) = 𝑥 0 = 0
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Diffusion equation: normal dispersion law

𝜕𝑃(𝑥, 𝑡)
𝜕𝑡

= 𝐷
𝜕]𝑃(𝑥, 𝑡)
𝜕𝑥]

Mean square displacement can be calculated from the second moment 
𝜎](𝑡) = 𝑥] (𝑡) = ∫ 𝑑𝑥 𝑥] 𝑃(𝑥, 𝑡)

The evolution of the mean square displacement follows from the diffusion equation as 
𝑑
𝑑𝑡

𝑥] = ∫ 𝑑𝑥 𝑥]
𝜕𝑃 𝑥, 𝑡
𝜕𝑡

= 𝐷∫ 𝑑𝑥 𝑥]
𝜕]𝑃 𝑥, 𝑡
𝜕𝑥]

After integration by parts 
𝑑
𝑑𝑡

𝑥] = −2𝐷∫ 𝑑𝑥 𝑥
𝜕𝑃 𝑥, 𝑡
𝜕𝑥

= 2𝐷∫ 𝑑𝑥 𝑃(𝑥, 𝑡)

Using the normalization condition

�
�c

𝑥] = 2𝐷 → 𝑥] (𝑡) = 2𝐷𝑡

9

𝑥]

𝑡
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Dispersion law
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Poisson stochastic process

Describes discrete and independent random events that occur at a fixed rate, 𝜆

Two important examples of such Poisson processes:  radioactive decay and death process in population dynamics

Radioactive decay example: 

Caesium-137 is a radioactive isotope of caesium which is formed by the nuclear fission of uranium- 235 and other fissionable
isotopes in nuclear reactors and nuclear weapons. It has a half-life of 27 years (it takes 27 years for half of the radioactive nuclei
to disintegrate)

Survival probability for one nucleus: 𝒑𝒕 = 𝒆P�𝒕. The decay rate 𝜆 is estimated from the half-life time

𝟏
𝟐
= 𝒆P�×𝟐𝟕 → 𝜆 = 𝒍𝒏 𝟐

𝟐𝟕
𝒚𝒓P𝟏 = 𝟖. 𝟐×𝟏𝟎P𝟏𝟎𝒔P𝟏 very small decay rate!

However, consider a small sample of 1𝜇𝑔 𝐶𝑠*�� → 𝑁 ≈ 10*� nuclei. Then, the mean decay rate 𝑁𝜆 ≈ 8.2×10� 𝑑𝑒𝑐𝑎𝑦𝑠/𝑠

What is the probability of having m out of N events with decaying nuclei?  

11Fys4130, 2019



Radioactive decay
Decay probability for one nucleus: 𝒒𝒕 = 𝟏 − 𝒆P�𝒕

The probability of having 𝑛 out of 𝑁 decay events is given by the binomial distribution

𝑄c 𝑚 =
𝑁!

𝑚! 𝑁 −𝑚 !
1 − 𝑝c N𝑝c�PN

This is equivalent to the probability that 𝑛 = 𝑁 −𝑚 nuclei survived the decay

𝑃c 𝑛 =
𝑁!

𝑛! 𝑁 − 𝑛 !
𝑝c. 1 − 𝑝c �P.
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Poisson distribution
In the limit 𝑵 → ∞,𝒂𝒏𝒅 𝒑𝒕 → 𝟎 with fixed 𝑁𝑝c = 𝜇c, we have that the probability of 𝑛 surviving
nuclei can be written as 

𝑃 ¡ 𝑛 =
𝜇c.

𝑛!
𝑁!

𝑁 − 𝑛 !
1
𝑁. 1 −

𝜇c
𝑁

�P.

(Average) 𝑛 surviving nuclei is small compared to the total number 𝑁

𝑃 ¡ 𝑛 =
𝜇c.

𝑛!
𝑁 𝑁 − 1 ⋯ 𝑁 − 𝑛 𝑁 − 𝑛 − 1 ⋯1

𝑁 − 𝑛 𝑁 − 𝑛 − 1 ⋯1
1
𝑁. 𝑒

P ¡

Poisson distribution

𝑃 ¡ 𝑛 =  ¡£

.! 𝑒
P ¡,   𝑄 ¡ 𝑛 =  ¡¤¥£

(�P.)! 𝑒
P ¡
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Poisson distribution
𝑃 ¡ 𝑛 =

𝜇c.

𝑛! 𝑒
P ¡

Normalization condition

Q
.

𝑃 ¡ 𝑛 =Q
.

𝜇c.

𝑛! 𝑒
P ¡ = 1

Average number of surviving nuclei 𝑛 = 𝑁𝑒P�c

𝑛 = Q
.

𝑛 𝑃 ¡ 𝑛 = 𝑒P ¡Q
.

𝜇c.

𝑛!
𝑛 = 𝑒P ¡ 𝜇c

𝑑
𝑑𝜇c

𝑒 ¡ = 𝜇c → 𝑛 = 𝜇c = 𝑁𝑝c

Mean-square number of surviving nuclei Δ𝑛] = 𝑁𝑒P�c = 𝑛

𝑛] = Q
.

𝑛]𝑃 ¡ 𝑛 = 𝑒P ¡Q
.

𝜇c.

𝑛!
𝑛] = 𝑒P ¡ 𝜇c

𝑑
𝑑𝜇c

]

𝑒 ¡ = 𝜇c] + 𝜇c

𝑛] = 𝜇c] + 𝜇c → Δ𝑛] = 𝑛] − 𝑛 ] = 𝜇c

Standard deviation:  Δ𝑛] = 𝑛

(variance equal mean)→ Poisson fluctuations: a.d

.
= *

.
≈ *

�
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Master equation for Poisson process
Consider N radioactive nuclei at 𝑡 = 0, such that 𝑃 𝑛, 0 = 𝛿.,�. Initially, all N nuclei survived the decay: 𝑃 𝑁, 0 = 1 and 𝑃 𝑁 − 1,0 =

𝑃 𝑁 − 2,0 = ⋯𝑃 0,0 = 0. However, as time goes by, we have a non-zero probability that only a fraction of the total number survived the

decay at a given time. That fraction gets smaller and smaller, and evetually after sufficiently long time we expect no one surviving the decay

𝑃 0, 𝑡 → ∞ = 1. 

At a time 𝑡 between these two extremes, we expect that there is a finite probability 𝑃(𝑛, 𝑡) of having 𝑛 out of 𝑁 nuclei surviving the decay. We

want to derive how this probability depends on the probability at the previous time. 

Similarly to RW master equation, the probability 𝑃 𝑛, 𝑡 changes because of two possible scenarios:   

i) Suppose that there were (𝑛 + 1) at 𝑡 and that there is a nucleus (any of them!) will decay. The decay probability for a specific nucleus

is qa§ = 1 − 𝑒P�ac . But, any of the (𝑛 + 1) nuclei can decay,  so the change that one of them will do that is larger and given by the

binomial distribution 𝑛 + 1 𝑞ac𝑝ac. . The probability for (𝑛 + 1) survivers at 𝑡 is 𝑃 𝑛 + 1, 𝑡 , hence this scenario gives a contribution(

)

𝑛 +

1 𝑞ac𝑝ac. 𝑃(𝑛 + 1, 𝑡) .

ii) Suppose that there were (𝑛) at 𝑡 and a nucleus (any of them) will decay. The probability that one out of (𝑛) will decay is the binomial 

distribution 𝑛𝑞ac𝑝ac.P*. The probability for (𝑛) survivers at 𝑡 is 𝑃 𝑛, 𝑡 , hence change in probability is proportional to  −nqa§𝑝ac.P*𝑃 𝑛, 𝑡 .

𝑃 𝑛, 𝑡 + Δ𝑡 = 𝑃 𝑛, 𝑡 + 𝑛 + 1 𝑞ac𝑝ac. 𝑃 𝑛 + 1, 𝑡 − nqa§𝑝ac.P*𝑃(𝑛, 𝑡)
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Master equation for Poisson process
Consider N radioactive nuclei at 𝑡 = 0, such that 𝑃 𝑛, 0 = 𝛿.,�. Initially, all N nuclei survived the decay: 𝑃 𝑁, 0 = 1 and 𝑃 𝑁 − 1,0 = 𝑃 𝑁 − 2,0 = ⋯𝑃 0,0 = 0.

However, as time goes by, we have a non-zero probability that only a fraction of the total number survived the decay at a given time. That fraction gets smaller and 

smaller, and evetually after sufficiently long time we expect no one surviving the decay 𝑃 0, 𝑡 → ∞ = 1. 

At a time 𝑡 between these two extremes, we expect that there is a finite probability 𝑃(𝑛, 𝑡) of having 𝑛 out of 𝑁 nuclei surviving the decay. We want to derive how

this probability depends on the probability at the previous time. 

𝑃 𝑛, 𝑡 + Δ𝑡 = 𝑃 𝑛, 𝑡 + 𝑛 + 1 𝑞ac𝑝ac. 𝑃 𝑛 + 1, 𝑡 − nqa§𝑝ac.P*𝑃(𝑛, 𝑡)

Taylor expanding around 𝑡:

ef(.,c)
ec

= *P¨¥©ª¡ ¨¥£©ª¡

ac
𝑛 + 1 𝑃 𝑛 + 1, 𝑡 − *P¨¥©ª¡ ¨¥(£¥«)©ª¡

ac
𝑛𝑃 𝑛, 𝑡

Taking the limit of Δ𝑡 ≪ 1
𝜕𝑃(𝑛, 𝑡)
𝜕𝑡

= 𝜆 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 − 𝜆𝑛𝑃 𝑛, 𝑡 , 𝑛 = 1,⋯𝑁 (1)

Where ­ª¡
ac
= *P¨¥©ª¡

ac
→ 𝜆 is a fixed decaying rate.  
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Master equation: Generating function

We can solve the master equation for 𝑃(𝑛, 𝑡) by using the generating function method: We define the
generating function as 

𝐺 𝑠, 𝑡 = Q
.¯°

�

𝑠. 𝑃 𝑛, 𝑡 , s < 1

Using together with Eq. (1), we derive the evolution equation for the generating function as 

𝜕𝐺(𝑠, 𝑡)
𝜕𝑡

= 𝜆Q
.

�

𝑠. 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 − 𝑛𝑃 𝑛, 𝑡

𝜕𝐺
𝜕𝑠

= Q
.¯°

�

𝑠.P* 𝑛𝑃 𝑛, 𝑡 = Q
.¯*

�

𝑠.P* 𝑛𝑃 𝑛, 𝑡 = Q
.¯°

�

𝑠. (𝑛 + 1)𝑃 𝑛 + 1, 𝑡

𝜕𝐺(𝑠, 𝑡)
𝜕𝑡

= 𝜆
𝜕𝐺
𝜕𝑠

− 𝑠
𝜕𝐺
𝜕𝑠
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Master equation: Generating function
𝜕𝐺(𝑠, 𝑡)
𝜕𝑡

= 𝜆 1 − 𝑠
𝜕𝐺
𝜕𝑠
, 𝐺 𝑠, 𝑡 = Q

.¯°

�

𝑠. 𝑃 𝑛, 𝑡 , s < 1

Substitute 𝑥 = ln(1 − 𝑠)
𝜕𝐺(𝑠, 𝑡)
𝜕𝑡

+ 𝜆
𝜕𝐺
𝜕𝑥

= 0 → 𝐺 𝑠, 𝑡 = 𝑔(𝑥 − 𝜆𝑡)

𝑔(𝑥 − 𝜆𝑡) arbitrary function determined from the initial condition
For 𝑃. 0 = 𝛿.,� → 𝐺 𝑠, 0 = 𝑠�, hence

𝑔 𝑥 = 𝑠� = 1 − 𝑒b � and in general 𝑔 𝑥 − 𝜆𝑡 = 1 − 𝑒bP�c
�

𝐺 𝑠, 𝑡 = 1 − 𝑒bP�c
�
= 1 − 1 − 𝑠 𝑒P�c

�
= Q

.¯°

�

𝑠.
𝑁!

𝑛! 𝑁 − 𝑛 !
𝑒P.�c 1 − 𝑒P�c

�P.

Probability of have 𝑛 surving nuclei at time 𝑡 is 𝑃 𝑛, 𝑡 = �!
.! �P. !

𝑝c. 1 − 𝑝c �P., 𝑝c = 𝑒P�c

18Fys4130, 2019



Master equation: Poisson process

Probability of have 𝑛 surving nuclei at time 𝑡 is Binomial Distribution 
𝑃 𝑛, 𝑡 =

𝑁!
𝑛! 𝑁 − 𝑛 !

𝑝c. 1 − 𝑝c �P., 𝑝c = 𝑒P�c

On long time limit and large sample, we recover as the limit distribition the Poisson distribution

𝑃 𝑛, 𝑡 →�→²
³¡→°

𝜇c.

𝑛!
𝑒P ¡, 𝜇c = 𝑁𝑝c
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Master equation: moment evolution

𝜕𝑃(𝑛, 𝑡)
𝜕𝑡 = 𝜆 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 − 𝑛𝑃 𝑛, 𝑡 , 𝑛 = 1,⋯𝑁

How does the mean number of surviving nuclei 𝑛 change with time?  

𝑑 𝑛
𝑑𝑡 = Q

.¯°

𝑛
𝜕𝑃(𝑛, 𝑡)
𝜕𝑡 = 𝜆Q

.¯°

𝑛 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 − 𝑛]𝑃 𝑛, 𝑡

𝑑 𝑛
𝑑𝑡 = 𝜆Q

.¯°

𝑛 − 1 𝑛𝑃 𝑛, 𝑡 − 𝑛]𝑃 𝑛, 𝑡 = −𝜆⟨𝑛⟩

𝑑 𝑛
𝑑𝑡

= −𝜆 𝑛 → 𝑛 = 𝑁𝑒P�c = 𝜇c
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Master equation: moment evolution

𝜕𝑃(𝑛, 𝑡)
𝜕𝑡

= 𝜆 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 − 𝜆𝑛𝑃 𝑛, 𝑡 , 𝑛 = 1,⋯𝑁

How does the mean-square number of surviving nuclei 𝑛] change with time?  

𝑑 𝑛]

𝑑𝑡
= Q

.¯°

𝑛]
𝜕𝑃(𝑛, 𝑡)
𝜕𝑡

= 𝜆Q
.¯°

𝑛] 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 − 𝑛�𝑃 𝑛, 𝑡

𝑑 𝑛]

𝑑𝑡
= 𝜆Q

.¯°

𝑛 − 1 ]𝑛𝑃 𝑛, 𝑡 − 𝑛�𝑃 𝑛, 𝑡

𝑑 𝑛]

𝑑𝑡
= 𝜆 𝑛 − 2 𝑛]
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Master equation: moment evolution
How does the mean-square number of surviving nuclei 𝑛] change with time?  

𝑒]�c
𝑑 𝑛]

𝑑𝑡 = 𝑒]�cΓ 𝑛 − 2 𝑛]

𝑒]�c
𝑑 𝑛]

𝑑𝑡
+ 2𝜆𝑒]�c 𝑛] = 𝑒]�cΓ 𝑛 →

𝑑
𝑑𝑡

𝑒]�c 𝑛] = 𝑁𝜆𝑒�c

𝑒]�c 𝑛] − 𝑁] = 𝑁 (𝑒�c − 1)

𝑛] = 𝑁]𝑒P]�c + 𝑁 (𝑒P�c − 𝑒P]�c)
Standard deviation in the fluctuations

Δ𝑛] = 𝑁𝑒P�c 1 − 𝑒P�c = 𝑁𝑝c 1 − 𝑝c →³¡→°
�→²

𝑁𝑝c = 𝜇c
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