Lecture 26
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Master equations for Gaussian and Poisson stochastic processes



What is a master equation?

» Describes the time evolution of the Ipro|:>c1bi|ity distribution
function for a stochastic process. Also called the rate equation

 Gaussian process - Random walker, Diffusion equation

* Poisson equation - Rate equation, Poisson distribution



Random walker m—1 " m+ 1

* At N + 1, we have two options: W

e RWtakesaleftjumpm+1-m
e RW takes arightjumpm—1-m

Particle stochastic dynamics

+1, with probability p

Mpyq = My +Ax,, Axp = {—1,with probability g



Master equation for a random walker (RW)

Probability density that a RW is at position m at time t + At depends only on the probability density at the
previous time t and the jump probability per unit step (no memory).

This means that the probability P(m, t + At) that the RW is at position m at time t + At depends on the
probabilities at the previous times step t as:
i)  If nothing happens at position m, then the probability does not change equals P(m, t)

i) If the RW was at m — 1 and moves to the right or if jumps to the left from m + 1, then we have a

contribution
pP(m—1,t) + qP(m+ 1,t)

iii) If it was at m and moves either right or left, then the change in probability is proportional to
—pP(m,t) — qP(m1,t) = —P(m,t)

Collecting all three possibilities, we can link the probabilities between successive timesteps as
P(m,t+At) =P(m,t) + pP(m—1,t) + gP(m + 1,t) — P(m,t)

Hence the master equation is
P(m,t+ At) = pP(m—1,t) + gP(m + 1,t)




Master equation

By Taylor expansion around t and rearranging terms, we obtain:

mzﬁ[p(m—Lt)—P(m,t)] 1

ot At At [P(m + 1,t) — P(m, t)]

Transition rates (hoping rates) for the right and left jumps

At = Wmem—-1 = Wmt1em

q

At = Wnmem+1 = Wm—1em

d
Ep(m: t) = Wnema P+ L,t) + wipem 1 P(m — L, t) = wi_1cmP(m, ) — Wwiny1cmP(m, t)

oP(m,t)

ot Z[Wmenp (n,t) — WpemP(m, t)]

n

Where w,,_,, are the transition rates from state n to state m, satisfying that

z Wmen =1, for alln
m



o

. o . . g=1-p
Diffusion equation i?g § N )

For continuous space and time, the master equation for the probability density becomes the diffusion
equation

oP(m,t) p q
—— = 5 [P —=1,0) = P(m, )] + - [P(m + 1,¢) — P(m, )] (1)

We introduce x = mAx as the RW position along the continuous line. In the limit of Ax —» 0, we Taylor expand
around x

P(x + Ax,t) — P(x,t) = +Ax op + Ax?oP
- ' T 0x 2 0x?
Hence Eq. (1) becomes
P (x, 1) OP(x,t)  92P(x 1)
e~ VTax P ax

v=(p—q) % is the drift velocity for a biased RW

2
D = % is the diffusion coefficient of the RW determined by the microscopic variables (stepsize and time interval).



Diffusion equation in 1D: v =0

OP(x,t) _ D 02P(x,t)

- Fcanl with initial condition P(x,t) = §(x) (1)

Can be solved by Fourier transform P(k,t) = [ dk e**P(x,t) - P(k,0) = 1. Apply FT to
Eq. (1)

dB(k,t)

= —Dk2P(k,t) » P(k,t) = P(k,0)e DKt

By Inverse FT .
P(x,t) = er dk e ***P(k, t)

Gaussian probability distribution function

1 _x
P(x,t) = e 4Dt

vanDt
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Gaussian PDF

_(x—p)?
e 2%

P(x,t) =
2102
Has two parameters: mean

u and standard deviation o



Diffusion equation: mean dislacement
0P(x,t) _  9*P(x,)

Average displacement is calculated as the first moment of the
PDF

(x)(t) = [ dx x P(x,t)

The evolution of the average displacement can be determined

from the diffusion equation as

0P(x,t)

2
—(x)—f XX Dfdxxmz

dx?

u(t) =(x)(0) =0
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Diffusion equation: normal dispersion law

oP(x,t) 5 92%P(x,t)
ot dx>2

Mean square displacement can be calculated from the second moment
a2 (t) = (x?)(t) = [ dx x? P(x,t)

The evolution of the mean square displacement follows from the diffusion equation as

d OP(x,t) 0%P(x,t)
L2y — 2 _ 2
dt(x )= [dxx ey D dx x 322
After integration by parts
0P(x,t)

= 2D dx P(x,t)

d
—(x2) = —2D
dt<x> J dxx 0x

Using the normalization condition

%(xz) = 2D - (x?)(t) = 2Dt
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Dispersion law

superdiffusion
{r*y oc 1%, a>1

MSD (r(t))

norm. diffusion
(ryc D1

subdiffusion
{r*) «c v, o<l

time 1
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Poisson stochastic process

Describes discrete and independent random events that occur at a fixed rate, 1

Two important examples of such Poisson processes: radioactive decay and death process in population dynamics

Radioactive decay example:

Caesium-137 is a radioactive isotope of caesium which is formed by the nuclear fission of uranium- 235 and other fissionable
isotopes in nuclear reactors and nuclear weapons. It has a half-life of 27 years (it takes 27 years for half of the radioactive nuclei

to disintegrate)
Survival probability for one nudeus: p; = e~*t. The decay rate 1 is estimated from the half-life time

% =e 27 5 ) = l:—fyr‘l = 8.2x107 191 yery small decay rate!

However, consider a small sample of 1ug Cs'37 - N ~ 10° nuclei. Then, the mean decay rate NA ~ 8.2x10° decays/s

What is the probability of having m out of N events with decaying nuclei?



Radioactive decay

Decay probability for one nucleus: g, =1 - e

The probability of having n out of N decay events is given by the binomial distribution

N!

m! (N —m)!

Q:(m) = (1- Pt)mpév_m

This is equivalent to the probability that n = N — m nuclei survived the decay

N!

n!'(N —n)!

P (n) = pt(1—p )N



Poisson distribution

In the limit N > o, and p; — 0 with fixed Np; = y;, we have that the probability of n surviving
nuclei can be written as

n N! 1 u N—-n
B = S (1)

(Average) n surviving nuclei is small compared to the total number N

_,ut"N(N—l) (N-n(N-n-1)--1 1
(N-n)(N—n—1)--1 NT

—HUt

®

By, (n)

Poisson distribution

P, (n) =E ek, @, (n) =&

(N n)' e —Ht



Poisson distribution ol weos

ue
P,,(n) =e He

u "
D B = ) e =1 0,
n n .

Average number of surviving nuclei (n) = Ne =

——

Normalization condition

l,
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_ ut _ d
= P = He Z— = He l —l Ht = = =N
(n) E nf,(m)=e . n= etk ue | et = e (n) = u, = Np,

n

Mean-square number of surviving nuclei (An?) = Ne At = (n)

2

_ u _ d
n2=Zn2P n)=eH Y —nZ=e “tl —l ebt = 2 +
(n®) Mt() il “tdut Ht T He

n n

(n?) = uf + pur = (An?) = (n?) — (n)* =

Standard deviation: /{An?) = /{(n)

. . . (An?2) 1 1
variance eqgual mean)— Poisson fluctuations: = ~
( q ) o T IR
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Master equation for Poisson process

Consider N radioactive nuclei at t = 0, such that P(n,0) = §,, 5. Initially, all N nuclei survived the decay: P(N,0) = 1 and P(N — 1,0) =
P(N — 2,0) = --- P(0,0) = 0. However, as time goes by, we have a non-zero probability that only a fraction of the total number survived the
decay at a given time. That fraction gets smaller and smaller, and evetually after sufficiently long time we expect no one surviving the decay

P(0,t > ) = 1.

At a time t between these two extremes, we expect that there is a finite probability P(n,t) of having n out of N nuclei surviving the decay. We

want to derive how this probability depends on the probability at the previous time.
Similarly to RW master equation, the probability P(n,t) changes because of two possible scenarios:

i) Suppose that there were (n + 1) at t and that there is a nucleus (any of them!) will decay. The decay probability for a specific nucleus

is qac = (1 — e™*4t). But, any of the (n + 1) nuclei can decay, so the change that one of them will do that is larger and given by the

binomial distribution (n + 1)qu.p},. The probability for (n + 1) survivers at ¢t is P(n + 1,t), hence this scenario gives a contribution(n +

DqacpacP(n+1,0) .

ii)  Suppose that there were (n) at t and a nucleus (any of them) will decay. The probability that one out of (n) will decay is the binomial
distribution ng,.pi; *. The probability for (n) survivers at ¢ is P(n, t), hence change in probability is proportional to —nqapi; *P(n, t).

P(n,t + At) = P(n,t) + (n + 1) qaprP(n + 1,t) — nthpZt_lP(n, t)



Master equation for Poisson process

Consider N radioactive nuclei at t = 0, such that P(n,0) = &, y. Initially, all N nuclei survived the decay: P(N,0) = 1 and P(N — 1,0) = P(N — 2,0) = - P(0,0) = 0.
However, as time goes by, we have a non-zero probability that only a fraction of the total number survived the decay at a given time. That fraction gets smaller and

smaller, and evetually after sufficiently long time we expect no one surviving the decay P(0,t - ) = 1.

At a time t between these two extremes, we expect that there is a finite probability P(n, t) of having n out of N nuclei surviving the decay. We want to derive how

this probability depends on the probability at the previous time.

P(n,t + At) = P(n,t) + (n + 1)qarpRP(n + 1,t) — nqaprs *P(n, t)

Taylor expanding around t:

oP(nt) _ (1_8—/1At)e—n/’mt _e—/lAt)e—(n—l)AAt

(1
o v (n+ 1)P(n+1,t) v nP(n,t)
Taking the limit of At < 1
dP(n, t)
— =AM+ DP(M+ 10 —P(n,t), n=1,-N (1)
_,—AAt
Where 14t = 126 7 _, 3 is a fixed decaying rate.

At At



Master equation: Generating function

We can solve the master equation for P(n,t) by using the generating function method: We define the

generating function as N

G(s,t) = z s"P(n,t), s<1
n=0
Using together with Eq. (1), we derive the evolution equation for the generating function as

N
aG(S t) _ 2 (Tl+ 1)P(n+ 1, t) —nP(TL t)]

e & N N
e Z s InP(n,t) = Z s InP(n,t) = ) s"(n+ 1DP(n+1,t)

n=0 n=1 n=0

3G (s, t) G 9G
=4(55 %)
ot



Master equation: Generating function

N

0G(s,t G
58 _a-928 G(S,t)zZS"P(n,t), s<1
ot das
n=0
Substitute x = In(1 — s)
aG(S't)+/laG 0 - G(s,t) At
_— = - = —
ot Ox St) =g = A1)

g(x — At) arbitrary function determined from the initial condition
For P,(0) = 8,5y = G(s,0) = sV, hence

g(x) =s¥ = (1 —e*)N and in general g(x — At) = (1 — ex—ﬂt)N

N

G(s,t) = (1- ex‘“)N =[1-(1- S)e‘“]N = Z st

n=0

N!
n!'(N —n)!

e—n/lt(l _ e—zt)N‘"

!

Probability of have n surving nuclei at time t is P(n,t) = n|(£’_n)' pr(1 —p )N, pr=e M
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Master equation: Poisson process

Probability of have n surving nuclei at tir?ve' t is Binomial Distribution

PO = oy PEA =" pe=e

On long time limit and large sample, we recover as the limit distribition the Poisson distribution
n
P(n, t) —N-co ‘u_te_'ut) Ht = Npt



Master equation: moment evolution

0P(n, ) _
ot

Alln+ DP(n+1,t) —nP(n,t)], n=1,-N

How does the mean number of surviving nuclei (n) change with time?

% — 2 napgz, 2 — AZ[n(n + 1)P(n+1,t) —n?P(n,t)]

n=0 n=0

d(n) = Az (n— DnP(n,t) —n?P(n,t)] = —A(n)

d{n) o ar
F——/Nn)—)(n)—N@ f =



Master equation: moment evolution

oP(n, t)
ot

=An+1P(n+1,t) — AnP(n,t), n=1,--N

How does the mean-square number of surviving nuclei (n?) change with time?

d(n?) _ z 2 oP(n,t) _

— == Z)[nZ(n + DPMm+1,t) —n3P(n, )]

n=0

2
d<dnt - A;[(n — D*nP(n,t) —n’P(n,t)]

d(n?)
dt

= Al(n) — 2(n*)]



Master equation: moment evolution

How does the mean-square number of surviving nuclei (n?) change with time?

2t d{n®)

¢ T dL

= e?MT[(n) — 2(n?)]

d(n? d
21t ( >_|_ 2/182/“(112) — ez’ltF(n) _)_[ezlt<n2>] — N/lelt

T dt dt

821t<n2> . NZ — N (elt . 1)

(le) — N2~ 2At L N (e—/lt _ 8—2/115)

Standard deviation in the fluctuations

(An?) = Ne™(1—e ™) = Np,(1 — p) >p~0 Np; =

N—o0



