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Brownian motion and 
Brownian particle

2

• Random motion of particles suspended in a 
fluid. These are also called colloidal particles
and are much bigger in size than the fluid 
particles

• Discovered by biologist Robert Brown (1827)
o observed pollen grains from a flowering plant 

through a microscope.
o tiny particles of the grain suspended within the 

fluid, moved in a randomly 
o He found that other non-living particles

suspended in fluids executes a similar random 
motion, e.g. dust in the air. 
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Enstein explanation of Brownian motion

3

• Molecular theory of Brownian motion as  
thermal motion 

• Brownian motion as the microscopic process 
responsible for diffusion on a macroscopic
scale.
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Random force from thermal motion

The Brownian motion is described by a stochastic dynamics of the colloidal particle. The 
evolution equation of the Brownian particle position is known as the Langevin equation. It 
is a generalization of the Newton’s law of motion when the Brownian particle experiences
a random force. 

Net momentum exchange Δ𝑃 between fluid particles and Brownian particle in a time 
interval Δ𝑡 is a superposition of random collisions due to thermal motion of fluid particles

Δ𝑃 =%
&'(

)

𝛿𝑝&

From the central limit theorem, Δ𝑃 is Gaussian distributed with zero mean and standard 
deviation increases as the square root of time 

Δ𝑃 = 0

Δ𝑃- = 𝑁𝜎 ∼ Δt

4

𝛿𝑝& = 0

𝛿𝑝&- = 𝜎
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Random force

Brownian particle is moving under the random force 𝑅(𝑡) induced by 
the collisions with the fluid particles

𝑚
𝑑𝑣
𝑑𝑡

= 𝑅

The force fluctuates around a zero mean

𝑅 ∼
Δ𝑃
Δt

= 0

And is 𝛿-correlated in time 

𝑅 𝑡 𝑅(𝑡 + Δ𝑡) ∼
Δ𝑃-

Δt
∼
1
Δ𝑡
→ 𝛿(Δ𝑡)
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Random motion 

Brownian particle is moving under the random 
force 𝑅 induced by the collisions with the fluid 
particles

𝑚
𝑑𝑣
𝑑𝑡

= 𝑅(𝑡)

𝑅(𝑡) = 0

𝑅 𝑡 𝑅(𝑡′) = 𝑎𝛿(t − t′)
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Langevin equation includes a drag force and random force 

Brownian particle dissipates some of its kinetic energy by viscous drag

𝑚
𝑑𝑣
𝑑𝑡 = −𝛼𝑣 + 𝑅 𝑡

𝑅(𝑡) = 0

𝑅 𝑡 𝑅(𝑡′) = 𝑎𝛿(t − t′)

• strength of the random force is set by the assumption that the
Brownian particle is at thermal equilibrium with the fluid particles
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Langevin equation

Brownian particle dissipates some of its kinetic energy by viscous drag

𝑚
𝑑𝑣
𝑑𝑡 = −𝛼𝑣 + 𝑅 𝑡

𝑅(𝑡) = 0
𝑅 𝑡 𝑅(𝑡′) = 𝑎𝛿(t − t′)

• strength of the random force is determined by the assumption that the 
Brownian particle (BP) is at thermal equilibrium with the fluid particles
• Mean kinetic energy of BP equal to the average kinetic energy per fluid particle

𝑚 𝑣-

2
=
𝑚@ 𝑣@-

2
=
𝑘𝑇
2

(1𝐷)
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Determine 𝑣- from 𝑣 𝑡 𝑣(0)

𝑒
EF
G

𝑚
𝑚
𝑑𝑣
𝑑𝑡

= −𝛼𝑣 + 𝑅 𝑡
𝑒
EF
G

𝑚
→

𝑑
𝑑𝑡

𝑣 𝑒
EF
G =

𝑅
𝑚
𝑒
EF
G

𝑣 𝑡 = H
IJ

F
𝑑𝑡K

𝑅 𝑡K

𝑚 𝑒I
E FIFL

G

Autocorrelation function 𝑣 𝑡 𝑣(0) = ∫IJ
F 𝑑𝑡′ ∫IJ

N 𝑑𝑡′′ 𝑒I
O PQPLQPLL

R
S FL S(FKK)

GT = U
-GE

𝑒I
O
RF

𝑣 𝑡 𝑣(0) =
𝑎
𝑚- H

IJ

F
𝑑𝑡K H

IJ

N
𝑑𝑡KK 𝑒I

E FIFLIFLL
G 𝛿 𝑡K − 𝑡KK

𝑣 𝑡 𝑣(0) =
𝑎
𝑚- H

IJ

F
𝑑𝑡K H

IJ

N
𝑑𝑡KK 𝑒I

E FIFLIFLL
G 𝛿 𝑡K − 𝑡KK , 𝑡 > 0

𝑣 𝑡 𝑣(0) =
𝑎
𝑚- H

IJ

N
𝑑𝑡KK 𝑒I

E FI-FLL
G =

𝑎
2𝑚𝛼

𝑒I
E
GF
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BP at thermal equilibrium with the fluid
Fluctuation-dissipation relation

𝑚
2 𝑣 𝑡 - =

𝑚
2 𝑣 0 - =

𝑘𝑇
2

𝑣 𝑡 𝑣(0) =
𝑎

2𝑚𝛼 𝑒
IEGF

𝑎 = 2𝛼𝑘𝑇
• Amplitude of the random force increases with: 

• the temperature of the fluid (more energetic particles, more collusions)
• the viscous drag coefficient (the higher the damping, the more energy is dissipated into

the fluid)
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Langevin equation: 

𝑚
𝑑𝑣
𝑑𝑡

= −𝛼𝑣 + 𝑅 𝑡

𝑅(𝑡) = 0
𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

• Find the mean square displacement and the diffusion coefficent
(1D) 
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Langevin equation: mean square displacement

𝑚
𝑑𝑣
𝑑𝑡 = −𝛼𝑣 + 𝑅 𝑡

𝑅(𝑡) = 0
𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

• 𝑥 𝑡 = ∫N
F 𝑑𝑡( 𝑣 𝑡( = ∫N

F 𝑑𝑡( ∫IJ
F 𝑑𝑡K S FL

G
𝑒I

O
R FYIFL

𝑥 𝑡 - = H
N

F
𝑑𝑡( 𝑣 𝑡( H

N

F
𝑑𝑡- 𝑣 𝑡-

𝑥 𝑡 - = H
N

F
𝑑𝑡( H

N

F
𝑑𝑡- H

IJ

FY
𝑑𝑡K H

IJ

FT
𝑑𝑡KK 𝑒I

E FYZFTIFLIFLL
G

𝑅 𝑡K 𝑅(𝑡′′)
𝑚-

12Fys4130, 2019



Langevin equation: mean square displacement

𝑚
𝑑-𝑥
𝑑𝑡-

= −𝛼
𝑑𝑥
𝑑𝑡
+ 𝑅 𝑡 , (1)

𝑅(𝑡) = 0
𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

Mean square displacement is obtained from the integration of eq (1)

𝑥 𝑡 - = H
N

F
𝑑𝑡( H

N

F
𝑑𝑡- H

IJ

FY
𝑑𝑡K H

IJ

FT
𝑑𝑡KK 𝑒I

E FYZFTIFLIFLL
G

𝑅 𝑡K 𝑅(𝑡′′)
𝑚-

𝑥 𝑡 - =
2𝛼𝑘𝑇
𝑚- H

N

F
𝑑𝑡( H

N

F
𝑑𝑡- H

IJ

FY
𝑑𝑡K H

IJ

FT
𝑑𝑡KK 𝑒I

E FYZFTIFLIFLL
G 𝛿 𝑡K − 𝑡KK

𝑥 𝑡 - =
2𝛼𝑘𝑇
𝑚- H

N

F
𝑑𝑡( H

N

F
𝑑𝑡- H

IJ

[\](FY,FT)
𝑑𝑡K 𝑒I

E FYZFTI-FL
G

𝑥 𝑡 - =
𝛼𝑘𝑇
𝑚

H
N

F
𝑑𝑡( 𝑒

IEGFY H
N

F
𝑑𝑡- 𝑒

IEGFT𝑒
-E
G[\](FY,FT)
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Langevin equation: mean square displacement
(continued---)

𝑥 𝑡 - =
𝛼𝑘𝑇
𝑚

H
N

F
𝑑𝑡( 𝑒

IEGFY H
N

F
𝑑𝑡- 𝑒

IEGFT𝑒
-E
G[\](FY,FT)

𝑥 𝑡 - =
𝛼𝑘𝑇
𝑚

H
N

F
𝑑𝑡( 𝑒

IEGFY H
N

FY
𝑑𝑡- 𝑒

IEGFT𝑒
-E
GFT + H

FY

F
𝑑𝑡- 𝑒

IEGFT𝑒
-E
GFY

𝑥 𝑡 - =
𝛼𝑘𝑇
𝑚

H
N

F
𝑑𝑡( 2 − 𝑒I

E
GFY − 𝑒I

E
G(FIFY) =

2𝑘𝑇
𝛼 𝑡 −

𝑚
𝛼 1 − 𝑒I

E
GF
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Langevin equation: Einstein’s relation

𝑚
𝑑-𝑥
𝑑𝑡-

= −𝛼
𝑑𝑥
𝑑𝑡
+ 𝑅 𝑡 , (1)

𝑅(𝑡) = 0
𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

𝑥 𝑡 - =
2𝑘𝑇
𝛼 𝑡 −

𝑚
𝛼 1 − 𝑒I

EF
G

• 𝑡 ≫ G
E

(diffusion limit)

𝑥 𝑡 - = 2
𝑘𝑇
𝛼
𝑡 = 2𝐷𝑡

Fluctuation-Dissipation (Einstein) formula provides a relation between the diffusivity of the Brownian particle due to thermal
motion and the drag coefficient for a viscous (dissipative) fluid 

𝑫 = 𝒌𝑻
𝜶

In 3D: 𝒓 𝑡 - = 3 𝑥 𝑡 - = 6 fg
E
𝑡 → 𝐷hi =

hfg
E
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Langevin equation: Ballistic regime

𝑚
𝑑-𝑥
𝑑𝑡- = −𝛼

𝑑𝑥
𝑑𝑡 + 𝑅 𝑡 , (1)

𝑅(𝑡) = 0
𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

𝑥 𝑡 - =
2𝑘𝑇
𝛼

𝑡 −
𝑚
𝛼

1 − 𝑒I
EF
G

• 𝑡 ≪ G
E

(ballistic regime)

𝑥 𝑡 - =
𝑘𝑇
𝑚 𝑡-

𝑣FklmGUn =
𝑥 𝑡 -

𝑡 =
𝑘𝑇
𝑚 (𝑒𝑞𝑢𝑖𝑝𝑎𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦)

(on short timescales, the Brownian particles is «advected» by the fluid with a mean
velocity determined by the kinetic energy of the fluid particles)
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Brownian motion 
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𝑥 𝑡 -

2𝑡

𝑡



Random walk of fluid particles
Brownian motion of suspended particles

Random walk of fluid particles:     

𝑋 = ∑&'() Δx\ → 𝑋- = 𝑁⟨Δx-⟩ ↔ 𝑋- = 2 ~
T

-�
𝑡

• Diffusion coefficient of fluid particles (ideal gas approx.) 𝐷�� =
~T

-�
is determined by the mean-free path

(mean path between successive collisions) and the scattering time (mean time between successive
collisions) 

• Thermal velocity of the gas particles 𝑣Fk
(hi) = 3𝑘𝑇/𝑚 ∼ ~

�

Brownian motion of suspended particles:      

𝑚
𝑑𝑣
𝑑𝑡 = −𝛼𝑣 + 𝑅 𝑡
𝑅(𝑡) = 0

𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

𝑥 𝑡 - =
2𝑘𝑇
𝛼 𝑡 −

𝑚
𝛼 1 − 𝑒I

EF
G →F≫GE

2
𝑘𝑇
𝛼 𝑡

• Diffusion cofficient of suspended particles 𝐷hi = hfg
E

, depends on the fluid temperature and the damping 
coefficient
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Dynamic equilibrium of Brownian motion (Einstein 1905)

Concentration of independent Brownian particles
𝜕𝐶
𝜕𝑡
+ ∇ ⋅ 𝐽� = 0, 𝐽� = 𝐶𝑣 − 𝐷∇C

At equilibrium: 𝐽� = 0 → 𝐶𝑣 = 𝐷∇C

Brownian particle in a uniform gravitational field:  𝜇𝑣� = −𝑚𝑔

D
dC
dz

= −𝜇𝑚𝑔𝐶 → 𝐶 𝑧 ∼ 𝑒I
�
iG��

Maxwell-Bolztmann equilibrium distribution for the concentration of particles in a gravitational
potential 𝑈 𝑧 = 𝑚𝑔𝑧

𝐶 𝑧 ∼ 𝑒I�� � → 𝐷 = 𝜇𝑘𝑇 =
𝑘𝑇
𝛼
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Brownian motion and the determination of the Avogadro’s number
(Einstein 1905)

Brownian motion:      

𝑚
𝑑𝑣
𝑑𝑡 = −𝛼𝑣 + 𝑅 𝑡
𝑅(𝑡) = 0

𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

𝑥 𝑡 - =
2𝑘𝑇
𝛼 𝑡 −

𝑚
𝛼 1 − 𝑒I

EF
G →F≫GE

2
𝑘𝑇
𝛼 𝑡

• Diffusion cofficient of suspended particles 𝐷 = hfg
E
= 3 lim

F→J

� F T

-F
, depends on the fluid temperature and 

the damping coefficient. Since the Boltzmann’s factor relates to the Avocado number by 𝑘 = S
)�

, we can

determine 𝑁� as  

𝑁� =
3𝑅𝑇
𝛼 𝐷
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