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Brownian motion, Einstein relation



Brownian motion and
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Brownian particle TR

» Random motion of particles suspended in a ?3 :-..f
fluid. These are also called colloidal particles AR 3“; ’
Hea -.;;.‘:.s';‘ ."t.;;.';“‘

and are much bigger in size than the fluid
particles

» Discovered by biologist Robert Brown (1827)

o observed pollen grains from a flowering plant
through a microscope.

o tiny particles of the grain suspended within the i I

fluid, moved in a randomly 5 I i
° ) SR ) 3
° ° ° S (U QOA;Q CHS A
o He found that other non-living particles o SRR P e O
suspended in fluids executes a similar random ° e alEd Y o

motion, e.g. dust in the air.
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Enstein explanation of Brownian motion

* Molecular theory of Brownian motion as
thermal motion

* Brownian motion as the microscopic process

responsible for diffusion on a macroscopic
scale.
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Random force from thermal motion

The Brownian motion is described by a stochastic dynamics of the colloidal particle. The
evolution equation of the Brownian particle position is known as the Langevin equation. It

is a generalization of the Newton’s law of motion when the Brownian particle experiences
a random force.

Net momentum exchange AP between fluid particles and Brownian particle in a time
interval At is a superposition of random collisions due to thermal motion of fluid particles

N
i=1

From the central limit theorem, AP is Gaussian distributed with zero mean and standard
deviation increases as the square root of time

(AP) =0

(AP?) = No ~ At
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Random force

Brownian particle is moving under the random force R(t) induced by
the collisions with the fluid particles

dv_R
e

The force fluctuates around a zero mean

- () =0

And is 5-correlated in time

AP?\ 1
(R(OR(t + Ab)) ~ <A—t> ~ = = 5(80)
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Random motion

Brownian particle is moving under the random
force R induced by the collisions with the fluid
particles

dv _p
771.;5{27 = (:ti)
(R(t)) =0

(R(OR()) = ad(t—t)
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Langevin equation includes a drag force and random force

Brownian particle dissipates some of its kinetic energy by viscous drag

W RO
mdt = av

(R(t)) =0

(R(OR(t)) = ad(t —t)

« strength of the random force is set by the assumption that the
Brownian particle is at thermal equilibrium with the fluid particles
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Langevin equation

Brownian particle dissipates some of its kinetic energy by viscous drag

dv
—_— = — R
m— av + R(t)

(R(1)) =0
(RIOR(L)) = ad(t—t)

« strength of the random force is determined by the assumption that the
Brownian particle (BP) is at thermal equilibrium with the fluid particles

« Mean kinetic energy of BP equal to the average kinetic energy per fluid particle

m(v®) mf(vf) kT
2 2 7 4D
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Determine (v?) from (v(t)v(0))

at at

em dv [ LR em d [ at R at
—_— _= | = _— — m] =—em
mmdt w m dtve me

v(t) = f_;dt’ —

R(t") _at=t)
e m

a(t—t’—t”) (R(t’)R(t”))

0
Autocorrelation function (v(t)v(0)) = f_too dt’ f_oo dt' e m

t 0 alt—
(v(t)v(O))=%j dt’f ae ot

(t—t’—t”)

t 0 a
(v(t)v(O))=%j dt’f dt" e

a(t-2t"")

o a
m2 2ma
tl_tll)
- m 5(1” _ t”)
6(t' —t'), t>0
a a
= e_ﬁt

a (°
(v(t)v(O))=Wf dt'"e” m

2ma



BP at thermal equilibrium with the fluid
Fluctuation-dissipation relation

m m kT
= (()?) == ((0)) = =

(W(©)v(0)) = 5 — e '
a = 2akT

» Amplitude of the random force increases with:

* the temperature of the fluid (more energetic particles, more collusions)
* the viscous drag coefficient (the higher the damping, the more energy is dissipated into

the fluid)



Langevin equation:

v _ + R(t)
mdt = —av

(R(t))=10
(R(OR(t)) = 2akTs(t —t)

. I(=ind) the mean square displacement and the diffusion coefficent
1D



Langevin equation: mean square displacement

v _ + R(t)
mdt = —Qav

(R(t)) =0
(R(OR(t)) = 2akTS(t —t)

RO = o) = L )

t t
(D)) = f dt, v(t,) f dt, v(ty)
0 0

t t t1 ) a(ty+ty— I LI , Py
(x(£)?) = f at, f at, j it f e -t =) (REDR(E)
0 0 — 00 — 00

m



Langevin equation: mean square displacement

d?x dx
mog = —aE+R(t), (D
(R(6)) =0

(R()R(t) = 2akTS(t —t")

Mean square displacement is obtained from the integration of eq (1)

t t ty ty a(ti+t—t' =" Y (R(EDR(t"
(x(t)2)=f dtlf dtzj dt' | de"e ( (T)nz( )
0 0 —00 —00

, 2akT (¢ t ty ta a(ty+t,—t'-t"")
(x(t)*) = — JdtlJ dtzj dt’ dt' e m 6(t' —t'")
0 0 —00 —00

2akT (¢ t min(ty,t;) a(ty+t,-2t")
(x(t)?) = — jdtlj dtzJ dt'e m
m 0 0 —00

akT (¢ a t a oa
<X(t)2> — _f dtl e—mh f dtz e—mtz eﬁmm(tl’tz)
m J, 0



Langevin equation: mean square displacement

(continued—)

(x(t)?*) = ﬂ dtle‘ﬁt1 j dt, o mat2 yormin(ty )
kT (04 tl Za t 20
(x(t) ) — a— dtl e_mtl [ dtz e mtz dtz e themtll
m J, . .
t
2\ — ﬂ . —gtl (t t ) - ZkT B T B _a,
(x(t))—m Odtllz e m ] [t a(l em)]



Langevin equation: Einstein’s relation

d’x  dx
mﬁ——ad—+R(t) (D
(R())=0

(R(R(t)) = 2akTé(t —t)

(x(£)? )——lt——( T t)]
o t>» = (diffusion limit)
“ kT
(x(t)?) = 2? t = 2Dt

Fluctuation-Dissipation (Einstein) formula provides a relation between the diffusivity of the Brownian particle due to thermal
motion and the drag coefficient for a viscous (dissipative) fluid

p=4

a

3kT

In 3D: (r(£)?) = 3(x(1)?) = 6L t - Dyp = L



Langevin equation: Ballistic regime

d?x dx
m_o g = —aE+R(t), (1)
(R(t)) =10

(R(OR(t)) = 2akTS(t —t)

(x(t)? )—Zk—T[t——( 1—e m ]

c t K % (ballistic regime)
(X)) = 2
m
J{x()?) kT

Vihermal = n = - (equipartion of energy)

(on short timescales, the Brownian particles is «advected» by the fluid with a mean
velocity determined by the kinetic energy of the fluid particles)



Brownian motion

(x(®)? 1

2t

0.8}

0.6

04

0.2
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Random walk of fluid particles
Brownian motion of suspended particles

Random walk of fluid particles:

2
X =3, Ax; > (X?) = N(Ax?) & (X?) =27t
2

» Diffusion coefficient of fluid particles (ideal gas approx.) Dgp = /;—T is determined by the mean-free path

(mean path between successive collisions) and the scattering time (mean time between successive
collisions)

+ Thermal velocity of the gas particles v©>”) = ./3kT/m ~ A

T

Brownian motion of suspended particles:

dv
ma = —av + R(t)
(R(t)) =0

(R(OR(t) = 2akTS(t —t)

t>>—

(x(t))——[t——( —e )]—> m2—t

- Diffusion cofficient of suspended particles D32 = **, depends on the FIUld temperature and the damping
coefficient “



Dynamic equilibrium of Brownian motion (Einstein 1905)

Concentration of independent Brownian particles

aC
-tV Jc=0,  Jo=Cv—DVC

At equilibrium: J, =0 - Cv = DVC
Brownian particle in a uniform gravitational field: uv, = —mg

dC u
= —umgC - C(z) ~e” D"9*

dz

Maxwell-Bolztmann equilibrium distribution for the concentration of particles in a gravitational
potential U(z) = mgz

kT
C(z) ~e PV 5 D = kT = -



Brownian motion and the determination of the Avogadro’s number
(Einstein 1905)

Brownian motion:

mZ—Z = —av + R(t)
(R(t))=0

(R(HR(t) = 2akTS(t —t)

(x(£)? )—ZkT[t——(l—e )]—> mZ—t

t>>—

2
- Diffusion cofficient of suspended particles D = 2 = 3 Ilim <X(2—tt)) , depends on the fluid temperature and

a t— oo

the damping coefficient. Since the Boltzmann’s factor relates to the Avocado number by k = Ni, we can
A

determine N, as



