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Brownian motion
Dissipation-Fluctuation relation



Langevin equation

Brownian particle is moving due to the random collisions with the
fluid particles while dissipatir&g energy due to the viscous drag.
v

_ — R
m—=av (1)

(R(t)) =0

(R(OR(t)) = 2akTS(t —t")
. A[ﬂ\plitude of the random force (from random collisions) increases
with:

the temperature of the fluid (more energetic particles, more collusions)

« the viscous drag coefficient (the higher the damping, the more energy is
dissipated into the fluid)

kT %t

* (w(O)v(t)) =—e m




Langevin equation: Einstein’s relation

Wt RE
mdt = av

(R(t))=10
(RR(t)) = 2akTSs(t—t)

The mean square displacement of the Brownian particles is
2kT at
O

+ t » = Diffusive Regime: on long timescales, the Brownian particles diffuses like a random
walker

(x(t)?) = zk—T t = 2Dt
a

The diffusivity coefficient is determined by the Fluctuation-Dissipation (Einstein) formula: D = %T

In 3D: (r(6)?) = 3(x(t)?) = 6T ¢ > Dy = 7

a



Langevin equation: Ballistic regime

m% = —av + R(t)
(R(t)) =10

(R(OR(t)) = 2akTS(t —t")

The mean square displacement of the Brownian particles is

(x(£)?) = Zk—T _t ——(1 e )]

+ t < = Ballistic Regime: on short timescales, the Brownian particles is advected by the

fluid with @ mean velocity determined by the kinetic energy of the fluid particles

(O = 12

/ 2
Vihermal = <x£t) ) — ; ~ from the equipartition of energy




Green-Kubo formula

* the mean square displamenent is related to velocity correlation function
by
¢t
(x(t)?) = f dt’ | dt"" (w(t)v(t'"))

O

* Gree-Kubo formula ?lves a general relationship between diffusion
coefficient D and velocity correlahon

t—o oo

D = joodr (v(0)v(1))
0



Green-Kubo relation: derivation

Stationary process
((E)v(t") = (w(t' —t")v(0) = f(It' —t"])

(even function)

t t
(x()?) = j at’ j dt” £’ — ')
O 0

t=t"—-t

jdt Jtt,tdrf(r)—Jdt o ,(t)j de(T)
=t j_t_, drf(r)‘ Jdt t'[f(t—t") — f(t)]
=tj0tdrf(r)—fotdt’ (t—t’)f(t—t’)+tj0dt’f(t—t’)—jotdt’t'f(t’)

t t
=2tj0drf(r)—2j0drrf(r)



Green-Kubo relation: derivation

(x(t)?) = th dr f(t) — 2 ftdr 1f (1)
0 0

2 t 1 t 0
D = lim <x(2tt) >=gi_)r£10 UO drf(r)—?fodrrf(r)] :fo dt f (1)

t— oo

D = foodr (v(0)v (1))
0



Green-Kubo formula: Brownian motion

D :f dt (v(0)v(1))
0
For the Brownian motion, the velocity correlation function is given by

kT _at
(v(O)v(t)>=Ee m

Hence, the diffusivity can be calculated as

at

D = k—Tfoo dte m — D =" (Einstein’s relation)
m -0 a



Fluctuation-dissipation relation

Green—Kubo formula and Einstein’s relation are example of fluctuation-dissipation

relations

* In general, Fluctuation-Dissipation relation connects equilibrium correlation functions
(measure of spontaneous equilibrium fluctuations) C(r — /, t) with response functions (measure

of dissipation), y(r — ', t)

d 0o
xr o= 7B Cn, >0 f dt x(r,0) = BC(r, 1)
0, t<o0 t

Assumptions:
- Linear response: a perturbation due an applied, external field is linearly proportional

to the applied field
- Time-Causality: a perturbation cannot occur before the system is perturbed.

- Onsager regression hypothesis



Fluctuation-dissipation relation: Brownian motion

 Consider a Brownian motion under an externally applied force

 The system is brought of out of equilibrium by switching off the force at t = 0 and we want to understand how does the
system relaxes back to equilibrium

mv=—av+ R(t) + F(t)
(R(®)) =10
(R()R(t) = 2akTs(t —t)

Average over different trajectories: m%(v) = —a(v) + F(t)

Fourier transform the average equation of motion ((v) = %f dw e‘i“’tﬁ(a)))
(—imw + a)?(w) = F(w)
a+ imw

P(w) = (w)F(w), r(w) = (response function)

a? + m2w?

- Linear response: The average velocity at a given time t is linearly related to the external force applied to the system at a
time t' <t

W)(t) = j dt’ x(t — tYE(t")



Fluctuation-dissipation relation: Brownian motion

» Consider a Brownian motion under an externally applied force

_ a + imw
N\ = N\ F , N\ :
P(0) = f(@FW), (@)= ———
X' (w) = Relp(w)] = a2+m2w2 X' (w) = Im[p(w)] = a2+m2w2

» Causality: y(t) = 0,t < 0 » Kramers — Kronig relations for ' (w) and 7" (w)

, X”(C()’)

2'(@) =PV [ dw

X' (')

w' — w

1 +
X'(w) = _EPVJ dow'
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Brownian motion: response function and damping coefficient
(measure of dissipation)

* Consider a Brownian motion under an externally applied force

. . 1
V(w) =X (wF(w),  jlw)=—
—imw + «a
Response function: y(t) = %fj;o dw 7(w)e @t = %Tf:: dw _i;l:):a
1 +00d e—iwt 1 at
t) =— w — = x(t) = —e mHeaviside|t
KO =g | Ao x@ = e g
m Im|w]

A

« t<0, [dwe ™t < o for Im(w) >0

—iwt

e
$. dw—
C1 w+ia/m

« t>0,fdwe ™ < oo for Im(w) <0 Re|w]
p~lwt . _at CZ
56 dw = 2mi e 10t =2mie m a
| C\

= 0 (no poles)

w + ia/m w=—1&

2 m

m
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Brownian motion: response function and damping coefficient (measure of dissipation)

» Consider a Brownian motion under an externally applied force

AN A 1
D(w) = f(w)F(w), ¥(w) =—
—lmw + «
: 1 4o —iwt 1 (+® et
Response function: x(t) = — J_ dw #(w)e™" = — [ "dw——o-

1 [t p-iwt (1 _at
X(t):_zmmf do———>x®) ={m¢ ™ 770
7 w+ﬁ \O' tS O

Integrated response function equals mobility: fooo dt y(t) = %
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Brownian motion: Dissipation-fluctuation

» Consider a Brownian motion under an externally applied force

. 1
t(w) =j(wF(w),  Flw)=—
—lmw + «
 Linear response: (v)(t) = ffooo dt’ y(t —t")F(t")
1 = 0 o "
+ Causdlity : y(O)=x®) ={ m® ™ 7Y [Pdty)=>
0, t<0 “

- Regression hypothesis: noise averages along different trajectories equal ensemble
averages with the equilibrium Maxwell-Boltzmann distribution during the relation from an
initial perturbation

1
(x)(t) = Zf AdWeqXt e~ B(H—x(Ft)



Brownian motion: Regression hypothesis

 Regression hypothesis: noise averages along different trajectories equal

ensemble averages with the equilibrium Maxwell-Boltzmann distribution
during the relation from an initial perturbation

1 1
(x)(t) = Ef dWeqX¢ e BH=xtF) » Ef dWeqX¢ e PH(1 + BxyF,)

(x)p(t) = (x)p=o + B{xXtX0)p=0F

(x)(t) = B{xexo)p=0F

Xx(t)

'Perturbation

'Spontaneous
fluctuation

v



Brownian motion: Regression hypothesis

 Regression hypothesis:

(x)() = Blxexg)p=oF (1)
* Linear response: (x)(t) = ffooo dt' y(t —t")F(t) = (x)(t) = fot dt, ffooo dt’ y(t; —
t"F(t")
0 t
(x)(t) = J dt' k(t —t)F(t), k(t—t') = f dt; y(t; — t')
o 0
Hence using Eq. (1): (x)(t) = Ff_ooo dt' k(t —t') = B{xxg)p=oF

0
j dt' k(t —t') = B{x:X0)r=0

j dt k(t) = B(xtX0)F=0
t

Response functionis «(t) = —ﬁ%(xtxo)ho, t>0

v



Brownian motion: Fluctuation-Dissipation relation

* How do we obtain Einstein’s formula for the diffusivity?

Fluctuation-Dissipation relation
d
k(t) = _BE<XtXO>F=O» t>0 (%)
Use that (x(t)x(0)) = if::o dw Sy(w)e !, S, (w) = |¥(w)|? power spectrum of position fluctuations

Similarly, (v(t)v(0)) = %fj:,o dw S, (w)e @, S (w) = |#(w)|?> power spectrum of velocity fluctuations

Relation between power spectrum:

Then, the FT of the Fluctuation-Dissipation relation (*)
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Brownian motion: Fluctuation-Dissipation relation

Fluctuation-Dissipation relation

d
k(t) = —B 7= {XeXo)F=0, t>0

With the FT
kK(w) = ifwSg(w)

Relation between power spectrum:

Sy(@) = 078,(@) > &) = ~ 1 §()

* Relate it with velocity response function x(t) = = k(t) > f(w) = —iwk(w)

* Fluctuation-Dissipation relation for the velocity fluctuations:
() = BSy(w) -
x(@) = plv(v(0)), >0
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Brownian motion: Fluctuation-Dissipation relation
* Fluctuation-Dissipation relation for position fluctuations:

d
K(t) = _B&<XtXO>F=O: t>0

* Fluctuation-Dissipation relation for the velocity fluctuations:

x(@) = gv(v(0)), t>0

Recall: fooo dt y(¢t) =% and Green-Kobo formula D = fooo dt (v(t)v(0))

j dt x(6) = B ] dt (v(Ov(0))
0 0

1 kT
—=BD->D=—
a a
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Fluctuation-Dissipation relations

* FT of the Langevin equation:

* Power spectrum of the velocity fluctuations:

L2
. IR (w)] 2akT
E; — 17 ;Z — —

v(@) = 7()] |—iom + al?  |—iom + al?

Using Green-Kobo formula D = fooo dt (v(t)v(0)) = S, (0)

. kT
D=S5,0) D= — D = kTy(0) & D = —kT lirr})(wii(w))
w—
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