
Lecture 28

15.05.2019
Brownian motion 

Dissipation-Fluctuation relation

1Fys4130, 2019



Langevin equation
Brownian particle is moving due to the random collisions with the
fluid particles while dissipating energy due to the viscous drag.

𝑚
𝑑𝑣
𝑑𝑡 = 𝛼𝑣 − 𝑅(𝑡)

𝑅(𝑡) = 0

𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)
• Amplitude of the random force (from random collisions) increases

with: 
• the temperature of the fluid (more energetic particles, more collusions)
• the viscous drag coefficient (the higher the damping, the more energy is 

dissipated into the fluid)

• 𝑣 0 𝑣 𝑡 = 23
4
𝑒6

78
9
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Langevin equation: Einstein’s relation
𝑚
𝑑𝑣
𝑑𝑡 = −𝛼𝑣 + 𝑅 𝑡

𝑅(𝑡) = 0
𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

The mean square displacement of the Brownian particles is 

𝑥 𝑡 < =
2𝑘𝑇
𝛼 𝑡 −

𝑚
𝛼 1 − 𝑒6

>?
4

• 𝑡 ≫ 4
>

Diffusive Regime: on long timescales, the Brownian particles diffuses like a random 
walker

𝑥 𝑡 < = 2
𝒌𝑻
𝜶

𝑡 = 2𝑫𝑡

The diffusivity coefficient is determined by the Fluctuation-Dissipation (Einstein) formula: 𝐷 = 23
>

In 3D: 𝒓 𝑡 < = 3 𝑥 𝑡 < = 6 23
>
𝑡 → 𝐷JK =

J23
>
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Langevin equation: Ballistic regime

𝑚
𝑑𝑣
𝑑𝑡

= −𝛼𝑣 + 𝑅 𝑡

𝑅(𝑡) = 0
𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

The mean square displacement of the Brownian particles is 

𝑥 𝑡 < =
2𝑘𝑇
𝛼

𝑡 −
𝑚
𝛼

1 − 𝑒6
>?
4

• 𝑡 ≪ 4
>

Ballistic Regime: on short timescales, the Brownian particles is advected by the
fluid with a mean velocity determined by the kinetic energy of the fluid particles

𝑥 𝑡 < =
𝑘𝑇
𝑚 𝑡<

𝑣?MNO4PQ =
R ? S

?
= 23

4
from the equipartition of energy
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Green-Kubo formula

• the mean square displamenent is related to velocity correlation function
by  

𝑥 𝑡 < = T
U

?
𝑑𝑡V T

U

?
𝑑𝑡VV ⟨𝑣 𝑡V 𝑣(𝑡′′)⟩

• Gree-Kubo formula gives a general relationship between diffusion
coefficient D and velocity correlation

𝐷 = lim
?→\

𝑥 𝑡 <

2𝑡 =
1
2𝑡TU

?
𝑑𝑡V T

U

?
𝑑𝑡VV ⟨𝑣 𝑡V 𝑣(𝑡′′)⟩

𝐷 = T
U

\
𝑑𝜏 ⟨𝑣 0 𝑣(𝜏)⟩
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Green-Kubo relation: derivation
Stationary process

𝑣 𝑡V 𝑣 𝑡VV = 𝑣 𝑡V − 𝑡VV 𝑣 0 = 𝑓(|𝑡V − 𝑡′′|)
(even function) 

𝑥 𝑡 < = T
U

?
𝑑𝑡V T

U

?
𝑑𝑡VV 𝑓(|𝑡V − 𝑡′′|)

𝜏 = 𝑡VV − 𝑡′

= T
U

?
𝑑𝑡V T

6?`

?6?`

𝑑𝜏 𝑓 𝜏 = T
U

?
𝑑𝑡V

𝑑
𝑑𝑡V

𝑡V T
6?`

?6?`

𝑑𝜏 𝑓 𝜏

= 𝑡V T
6?`

?6?`

𝑑𝜏 𝑓 𝜏 a
U

?
+ T

U

?
𝑑𝑡V 𝑡V[𝑓 𝑡 − 𝑡V − 𝑓(𝑡′)]

= 𝑡T
U

?
𝑑𝜏 𝑓 𝜏 − T

U

?
𝑑𝑡V 𝑡 − 𝑡V 𝑓 𝑡 − 𝑡V + 𝑡T

U

?
𝑑𝑡V 𝑓 𝑡 − 𝑡V − T

U

?
𝑑𝑡V 𝑡′𝑓(𝑡′)

= 2𝑡T
U

?
𝑑𝜏 𝑓 𝜏 − 2T

U

?
𝑑𝜏 𝜏𝑓 𝜏
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Green-Kubo relation: derivation

𝑥 𝑡 < = 2𝑡T
U

?
𝑑𝜏 𝑓 𝜏 − 2T

U

?
𝑑𝜏 𝜏𝑓 𝜏

𝐷 = lim
?→\

𝑥 𝑡 <

2𝑡
= lim

?→\
T
U

?
𝑑𝜏 𝑓 𝜏 −

1
𝑡
T
U

?
𝑑𝜏 𝜏𝑓 𝜏 = T

U

\
𝑑𝜏 𝑓(𝜏)

𝐷 = T
U

\
𝑑𝜏 ⟨𝑣 0 𝑣(𝜏)⟩
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Green-Kubo formula: Brownian motion  

𝐷 = T
U

\
𝑑𝜏 ⟨𝑣 0 𝑣(𝜏)⟩

For the Brownian motion, the velocity correlation function is given by 

𝑣 0 𝑣 𝑡 =
𝑘𝑇
𝑚
𝑒6

>?
4

Hence, the diffusivity can be calculated as 

𝐷 = 23
4 ∫U

\𝑑𝑡 𝑒6
78
9 → 𝐷 = 23

> (Einstein’s relation)
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Fluctuation-dissipation relation
Green—Kubo formula and Einstein’s relation are example of fluctuation-dissipation
relations

• In general, Fluctuation-Dissipation relation connects equilibrium correlation functions
(measure of spontaneous equilibrium fluctuations) C(𝑟 − 𝑟′, 𝑡) with response functions (measure
of dissipation), 𝜒(𝑟 − 𝑟′, 𝑡)

𝜒 𝑟, 𝑡 = i−𝛽
𝜕
𝜕𝑡 𝐶 𝑟, 𝑡 , 𝑡 > 0

0, 𝑡 ≤ 0
↔ T

?

\
𝑑𝜏 𝜒 𝑟, 𝑡 = 𝛽𝐶(𝑟, 𝑡)

Assumptions: 
• Linear response: a perturbation due an applied, external field is linearly proportional

to the applied field
• Time-Causality: a perturbation cannot occur before the system is perturbed.
• Onsager regression hypothesis
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Fluctuation-dissipation relation: Brownian motion

• Consider a Brownian motion under an externally applied force

• The system is brought of out of equilibrium by switching off the force at 𝑡 = 0 and we want to understand how does the
system relaxes back to equilibrium

𝑚 �̇� = −𝛼𝑣 + 𝑅 𝑡 + 𝐹(𝑡)
𝑅(𝑡) = 0

𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

• Average over different trajectories:  𝑚 r
r?

𝑣 = −𝛼⟨𝑣⟩ + 𝐹(𝑡)

• Fourier transform the average equation of motion 𝑣 = s
<t
∫ 𝑑𝜔 𝑒6vw? x𝑣 𝜔

−𝑖𝑚𝜔 + 𝛼 x𝑣(𝜔) = z𝐹(𝜔)

x𝑣 𝜔 = �̂� 𝜔 z𝐹 𝜔 , �̂� 𝜔 =
𝛼 + 𝑖𝑚𝜔
𝛼< + 𝑚<𝜔<

(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

• Linear response: The average velocity at a given time 𝑡 is linearly related to the external force applied to the system at a 
time 𝑡V < 𝑡

𝑣 𝑡 = T
6\

\
𝑑𝑡V 𝜒 𝑡 − 𝑡V 𝐹(𝑡V)
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Fluctuation-dissipation relation: Brownian motion

• Consider a Brownian motion under an externally applied force

x𝑣 𝜔 = �̂� 𝜔 z𝐹 𝜔 , �̂� 𝜔 =
𝛼 + 𝑖𝑚𝜔
𝛼< +𝑚<𝜔<

• �̂�V 𝜔 = Re �̂� 𝜔 = >
>S�4SwS , �̂�VV 𝜔 = 𝐼𝑚 �̂� 𝜔 = 4w

>S�4SwS

• Causality: 𝜒 𝑡 = 0, 𝑡 < 0 → 𝐾𝑟𝑎𝑚𝑒𝑟𝑠 − 𝐾𝑟�̈�𝑛𝑖𝑔 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 �̂�V 𝜔 𝑎𝑛𝑑 �̂�VV 𝜔

�̂�V 𝜔 = s
t
PV∫6

�𝑑𝜔V ��
`` w`

w`6w

�̂�VV 𝜔 = −
1
𝜋
PVT

6

�
𝑑𝜔V

�̂�V 𝜔V

𝜔V − 𝜔
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Brownian motion: response function and damping coefficient
(measure of dissipation)
• Consider	a	Brownian motion	under	an	externally applied force

x𝑣 𝜔 = �̂� 𝜔 z𝐹 𝜔 , �̂� 𝜔 =
1

−𝑖𝑚𝜔 + 𝛼
Response function:	𝜒 𝑡 = s

<t ∫6\
�\𝑑𝜔 �̂� 𝜔 𝑒6vw? = s

<t ∫6\
�\𝑑𝜔 N¡¢£8

6v4w�>

𝜒 𝑡 = −
1

2𝜋𝑖𝑚
T
6\

�\
𝑑𝜔

𝑒6vw?

𝜔 + 𝑖𝛼𝑚
→ 𝝌 𝒕 =

𝟏
𝒎
𝒆6

𝜶𝒕
𝒎𝑯𝒆𝒂𝒗𝒊𝒔𝒊𝒅𝒆 𝒕

• 𝑡 < 0, ∫ 𝑑𝜔𝑒6vw? < ∞ 𝑓𝑜𝑟 𝐼𝑚 𝜔 > 0

∮±² 𝑑𝜔
N¡¢£8

w�v>/4
= 0 (no poles)

• 𝑡 > 0, ∫ 𝑑𝜔𝑒6vw? < ∞ 𝑓𝑜𝑟 𝐼𝑚 𝜔 < 0

´
±S
𝑑𝜔

𝑒6vw?

𝜔 + 𝑖𝛼/𝑚
= 2𝜋𝑖 𝑒6vw? a

wµ6v>4
= 2𝜋𝑖 𝑒6

>?
4

12

−
𝛼
𝑚

𝑅𝑒[𝜔]

𝐼𝑚[𝜔]

𝐶s

𝐶<
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Brownian motion: response function and damping coefficient (measure of dissipation)

• Consider a Brownian motion under an externally applied force

x𝑣 𝜔 = �̂� 𝜔 z𝐹 𝜔 , �̂� 𝜔 =
1

−𝑖𝑚𝜔 + 𝛼
Response function: 𝜒 𝑡 = s

<t ∫6\
�\𝑑𝜔 �̂� 𝜔 𝑒6vw? = s

<t ∫6\
�\𝑑𝜔 N¡¢£8

6v4w�>

𝜒 𝑡 = −
1

2𝜋𝑖𝑚
T
6\

�\
𝑑𝜔

𝑒6vw?

𝜔 + 𝑖𝛼𝑚
→ 𝝌 𝒕 = i

𝟏
𝒎
𝒆6

𝜶𝒕
𝒎 , 𝑡 > 0

0, 𝑡 ≤ 0

Integrated response function equals mobility: ∫U
\ 𝑑𝑡 𝜒 𝑡 = s

>
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Brownian motion: Dissipation-fluctuation
• Consider a Brownian motion under an externally applied force

x𝑣 𝜔 = �̂� 𝜔 z𝐹 𝜔 , �̂� 𝜔 =
1

−𝑖𝑚𝜔 + 𝛼
• Linear response:  𝑣 𝑡 = ∫6\

\ 𝑑𝑡V 𝜒 𝑡 − 𝑡V 𝐹(𝑡V)

• Causality :  𝜒 𝑡 = 𝝌 𝒕 = i
𝟏
𝒎
𝒆6

𝜶𝒕
𝒎, 𝑡 > 0

0, 𝑡 ≤ 0
, ∫U
\𝑑𝑡 𝜒 𝑡 = s

>

• Regression hypothesis: noise averages along different trajectories equal ensemble 
averages with the equilibrium Maxwell-Boltzmann distribution during the relation from an 
initial perturbation

𝑥 𝑡 ≡
1
𝑍
∫ 𝑑𝜔N¸𝑥? 𝑒6¹(º6R8»8)
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Brownian motion: Regression hypothesis
• Regression hypothesis: noise averages along different trajectories equal

ensemble averages with the equilibrium Maxwell-Boltzmann distribution
during the relation from an initial perturbation

𝑥 𝑡 ≡
1
𝑍
∫ 𝑑𝜔N¸𝑥? 𝑒6¹ º6R8»8 ≈

1
𝑍
∫ 𝑑𝜔N¸𝑥? 𝑒6¹º(1 + 𝛽𝑥U𝐹U)

𝑥 » 𝑡 ≡ 𝑥 »µU + 𝛽 𝑥?𝑥U »µU𝐹

𝑥 𝑡 ≡ 𝛽 𝑥?𝑥U »µU𝐹

15

𝐹?

𝑡

Perturbation

Spontaneous
fluctuation
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Brownian motion: Regression hypothesis

• Regression hypothesis:
𝑥 𝑡 ≡ 𝛽 𝑥?𝑥U »µU𝐹 (1)

• Linear response:  �̇� 𝑡 = ∫6\
\ 𝑑𝑡V 𝜒 𝑡 − 𝑡V 𝐹 𝑡V → 𝑥 𝑡 = ∫U

? 𝑑𝑡s ∫6\
\ 𝑑𝑡V 𝜒(

)
𝑡s −

𝑡V 𝐹(𝑡V)

𝑥 𝑡 = T
6\

\
𝑑𝑡V 𝜅 𝑡 − 𝑡V 𝐹 𝑡V , 𝜅 𝑡 − 𝑡V = T

U

?
𝑑𝑡s 𝜒 𝑡s − 𝑡V

Hence using Eq. (1):   𝑥 𝑡 = 𝐹 ∫6\
U 𝑑𝑡V 𝜅 𝑡 − 𝑡V = 𝛽 𝑥?𝑥U »µU𝐹

T
6\

U
𝑑𝑡V 𝜅 𝑡 − 𝑡V = 𝛽 𝑥?𝑥U »µU

𝜏 = 𝑡 − 𝑡V

T
?

\
𝑑𝜏 𝜅 𝜏 = 𝛽 𝑥?𝑥U »µU

Response function is	 𝜅 𝑡 = −𝛽 r
r?

𝑥?𝑥U »µU, 𝑡 > 0
16

𝐹?

𝑡
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Brownian motion: Fluctuation-Dissipation relation

• How do we obtain Einstein’s formula for the diffusivity? 

Fluctuation-Dissipation relation

κ t = −β
d
dt

xÀxU ÁµU, t > 0 (∗)

Use that x t x(0) = s
<Ã ∫6\

�\dω zSÆ ω e6ÇÈÀ, zSÆ ω = É𝑥 𝜔 < power spectrum of position fluctuations

Similarly, v t v(0) = s
<Ã ∫6\

�\dω zSË ω e6ÇÈÀ, zSË ω = É𝑣 𝜔 < power spectrum of velocity fluctuations

Relation between power spectrum:  

z𝑺𝒗 𝝎 = 𝝎𝟐z𝑺𝐱 𝝎

Then, the FT of the Fluctuation-Dissipation relation (*)

�̂� 𝜔 = 𝑖𝛽𝜔zSÆ ω
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Brownian motion: Fluctuation-Dissipation relation

Fluctuation-Dissipation relation

κ t = −β
d
dt

xÀxU ÁµU, t > 0

With the FT 
�̂� 𝜔 = 𝑖𝛽𝜔zSÆ ω

Relation between power spectrum:  

zSË ω = 𝜔<zSÆ ω → �̂� 𝜔 = −
𝛽
𝑖𝜔
zSË ω

• Relate it with velocity response function 𝜒 𝑡 = r
r? 𝜅 𝑡 → �̂� 𝜔 = −𝑖𝜔�̂� 𝜔

• Fluctuation-Dissipation relation for the velocity fluctuations: 
�̂� 𝜔 = 𝛽zSË ω →

𝜒 𝑡 = 𝛽 v t v 0 , 𝑡 > 0
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Brownian motion: Fluctuation-Dissipation relation

• Fluctuation-Dissipation relation for position fluctuations: 

κ t = −β
d
dt

xÀxU ÁµU, t > 0

• Fluctuation-Dissipation relation for the velocity fluctuations: 
𝜒 𝑡 = 𝛽 v t v 0 , 𝑡 > 0

Recall: ∫U
\𝑑𝑡 𝜒 𝑡 = s

>
and Green-Kobo formula D = ∫U

\𝑑𝑡 v t v 0

T
U

\
𝑑𝑡 𝜒 𝑡 = 𝛽T

U

\
𝑑𝑡 v t v 0

1
𝛼 = 𝛽𝐷 → 𝑫 =

𝒌𝑻
𝜶
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Fluctuation-Dissipation relations
• FT of the Langevin equation: 

Év 𝜔 =
z𝑅 𝜔

−𝑖𝜔𝑚 + 𝛼
= �̂�(𝜔) z𝑅 𝜔

• Power spectrum of the velocity fluctuations: 

zSË ω = É𝑣 𝜔 < =
z𝑅 𝜔 <

−𝑖𝜔𝑚 + 𝛼 < =
2𝛼𝑘𝑇

−𝑖𝜔𝑚 + 𝛼 <

Using Green-Kobo formula D = ∫U
\ 𝑑𝑡 v t v 0 = zSË 0

𝑫 = z𝑺𝒗 𝟎 ↔ 𝑫 =
𝒌𝑻
𝜶
↔ 𝑫 = 𝒌𝑻�𝝌 𝟎 ↔ 𝑫 = −𝒌𝑻 lim

𝝎→𝟎
(𝝎�𝜿(𝝎))
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