Lecture 2
16.01.2019

Thermodynamic potentials, response functions and Maxwell’s
relations, thermodynamic stability



Summary lecture 1

* Thermodynamic laws are encapulated in the thermodynamic inequality

dU <TdS — PdV

* Entropy cannot be calculated solely from thermodynamics because the
expression is determined up the entropy constant and not extensive

SW,V,N) =Nk|>in(3)+InV +ay]

A consequence of an non-extensive entropy is the Gibbs paradox: the gas entropy changes even when
there is no change in the thermodynamic state of a gas



Classical mechanics versus thermodynamics

Q In classical mechanics, the stable equilibrium of a mechanical system is related to the minimum of its potential energy

A V(x)
Potential energy in Variables Driving force to
classical mechanics equilibrium
V(X,y,Z) X, y; yA F = _VV
M
e
L J .

What is the analogue of this for a thermodynamic system?



Free energies as thermodynamic potentials

U Describe the thermodynamic state of a system depending on how the

system interacts with its environment Thermodynamic Thermodynamic
Potentials (natural)
Variables

L When a system is isolated, the thermodynamic potential that is
minimized at equilibrium is its internal energy U

0 But, when a system is at equilibrium with a thermal bath at fixed T,
which energy is then minimized?

0 When a system is at equilibrium with a reservoir at fixed Tand P, which
energy is then minimized?
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Isolated systems and internal energy U(S,V,N)

1 Sum of all the kinetic and potential energies of all the particles in the system

O An infinitesimal dU is due to infinitesimal and independent changesin S,V,or N

w=(2) ase(®) are(2) an
B daS V,N av SN oON S,V

O Identify it with the thermodynamic identity for energy change in a reversible process

S,V,N

dU = TdS — PdV + udN

we can define T, P and u from changes in U with respect to their conjugate variables

7= (5, P==(5)su 1=

«ability to exchange energy», «ability to exchange volume», «ability to exchange particles»
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Isolated systems and internal energy U(S,V,N)

 From the 2nd law of thermodynamics, the entropy change satisfies this inequality
TdS = dU + PdV — udN
Hence the change in the internal energy satisfies this thermodynamic inequality

dU < TdS — PdV + udN

Then any change in the internal energy when S, V,and N are fixedis dU|gyy < 0

Which is to lower the internal energy to its miminum value at equilibrium

(d Reversible process in an isolated system at fixed S, V,and N means that U is conserved:

dU = 0, hence 6Q = —6W

S,V,N



Systems at constant P and Enthaly H(S, P, N)

U The enthalpy H is the thermodynamic potential given by the internal
energy of a system plus the work needed to keep the system at a given P

H=U+PV

O It is the energy to create something (system) out of nothing and make room for
it somewhere (environment)

O Aninfinitesimal change in H is due independent, infinitesimal changesin S, P, N

dH = (Z_I;)P,N ds + (g—;’)S’N dP + (Z—Z)S,P dN

By defining T = (g—?)P,N, V= (Z—IZ)S,N and pu = (Z_Z)S,P

[ Thermodynamic identity for an infinitesimal reversible process

dH = TdS + VdP + udN
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Systems at constant P and Enthaly H(S, P, N)

O Thermodynamic identity for an infinitesimal reversible process

dH = dU + d(PV)
Combing this with the 2nd law of thermodynamics,
dU < TdS — PdV + udN

1 Thermodynamic inequality for any infinitesimal process (reversible «=», irreversible
«>»)

dU + d(PV) < TdS + VdP + udN
dH < TdS + VAP + udN

» Any change in enthalpy H when S, P,and N are fixed is dH|gpy < 0.This is to lower
H to its miminum value at equilibrium

> Reversible process at fixed S, P,and N means that H is conserved: dH|spy = 0
> Reversible process at fixed P,and N means that : dH|p y = TdS = §Qy¢y
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Systems at constant P and Enthaly H(S, P, N)

 System + surrounding at constant pressure = isolated system

[ System can exchange work with the surrounding, thus from the
conservation of energy

D. Schroeder

d(U + Ugyrr) = 0 = dU = —dUgypr > —6W = Weypyr
O Principle of maximum work
oW < PdV — dU < —PdV

U Pressure is constant, thus this spontaneous process will minimize enthalpy at

equilibrium S, P,N p

d({U+PV)<0->dH<O0

O Working with enthalpy, we can describe the system in contact with its
surrounding at constant P without actually keeping track of the transformations

in the surroundings
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Joule-Thomson expansion: constant enthalpy

Q=0-AU=-W

Work done on the gas at P, =const:

0
lej PldV=—P1V1
|4

1

Work done by the gas at P, = const:

V2
szj Pde:P2VZ
0

Total work to move the gas from one chamber to the other

_W:_WI_WZ :P1V1—P2V2
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Joule-Thomson expansion

AU = —W -
U, -Uy=PV1— PV,

U1 +P1V1 —_ Uz +P2V2

This expansion is at constant enthalpy

AH=AWU+PV)=0
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Systems at constant T and Helmholtz free energy F(T,V,N)

O The Hemholtz free energy F is the thermodynamic potential given by the
internal energy of a system minus the available heat exchange with the thermal
bath fixed T

F=U-TS

[ It is the energy to create something (system) out of nothing when there is “free” heat
supply from the environment
O An infinitesimal change in F is due to independent, infinitesimal changesin T,V, N

dF = (g—i)V’N dT + (%)T’N dv + (S—Z)T’V dN

By defining S = — (Z_i)v,zv' P=-— (g—s)T’N and u = (a_N)T,V

[ Thermodynamic identity for an infinitesimal reversible process

dF = —SdT — PdV + udN
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d The system + its thermal bath = isolated system. Hence total internal energy is conserved
d(U + Upgen) = 0 > dU = —dUpgen

O System can exchange heat with its thermal bath, while both maintained the same
temperature T. Using the conservation of energy and Clausius inequality

SQbath — d_U
T T

8Qpqen = —0Q = —dU - < dSpatn

L Hence, the change in the total entropy, S = S + Spqin, iS

dU TdS — dU
dS + dSpaen 2 dS ——-2 0> ————20

QO Minimizing the Helmholtz free energy is equivalent to maximizing the total entropy
ds;, >0->dU-TS)<0-dF<0

* Describing the system by its Helmholtz free energy, we capture the evolution of both the
system and its thermal bath in accord to the thermodynamic principles
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Systems at constant T and Helmholtz free energy F(T,V,N)

[ Thermodynamic identity for an infinitesimal reversible process

dF = —SdT — PdV + udN
Combing this with the 2nd law of thermodynamics,

dU < TdS — PdV + udN
(J Thermodynamic inequality for any infinitesimal process (reversible «=», irreversible «>»)
dU — d(TS) < —TdS — PdV + udN
dF < —SdT — PdV + udN

» Any change in F when T,V,and N are fixed must be dF |7y y < 0. This is to lower F to its
miminum value at equilibrium

> Reversible process at fixed T, VV,and N means that F is conserved: dF |7, y = 0
> Reversible process at fixed T, and N means that : dF | y = —PdV

» Changes in F at a fixed T equals to the available work that a system can do.
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Systems at constant T and P and Gibbs free energy G(T, P, N)

O The Gibbs free energy F is the thermodynamic potential given by the internal
energy of a system minus the available heat exchange plus the work done on
the reservoir

G=U-TS+ PV

O It is the energy to create something (system) out of nothing and put into an
environment when there is “free” heat
O Aninfinitesimal change in G is due to independent, infinitesimal changes in T, P, N

dG = (g—j)P’N dT + (g—lf)T’N dP + (S—Z)T)P dN

By defining S = — (Z_;;")P,N' V= (%)T’N and u = (S_Z)T,p

[ Thermodynamic identity for an infinitesimal reversible process

dG = —SdT + VdP + pdN
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Systems at constant T and P and Gibbs free energy G(T, P, N)

[ Thermodynamic identity for an infinitesimal reversible process

dG = —=SdT + VdP + udN
Combing this with the 2nd law of thermodynamics,

dU < TdS — PdV + udN
(J Thermodynamic inequality for any infinitesimal process (reversible «=», irreversible «>»)
dU — d(TS) + d(PV) < —=TdS + VdP + udN
dG < —SdT + VdP + udN

O Any change in the Gibbs free energy G when T, P,and N are fixed must be dG|7py < 0
Which is to minimize G at equilibrium
[ Reversible process at fixed T, P,and N means that G is conserved: dG|7 py = 0

[ Reversible process at fixed T, and P means that : dG|7 p = udN

O Changesin G at a fixed T and P equals to the available chemical work to increase or decrease
the number of particles, or any other work which is not mechanical
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Thermodynamic potentials are related by Legendre transforms

The extensive variables (S, V, N) and intensive variables (T, P, u) are conjugate variables
When one is an independent (control) variable fixed by the surroundings, its conjugate variable is a derivative:

au
When S is a control variable then T = (—)
65 V,N
Variables like S are hand to control experimentally, hence it is better to transform the internal energy U into another
thermodynamic potential that has instead T as a natural variable

Legendre transform does precisely this: it is a transformation from one thermodynamic potential to another by changing
between conjugate variables

Example: the transformation from internal energy U(S,V, N) to entalphy H(S, P, N)

U(S,V,N) - H(S,P,N)
ou
H(S,P,N) =U(S,V,N) + PV,where P = — <—)
oV/sn

Example in mechanics:
(i)

L(q.q) =K(q) —-U(q), p= 39

~H(p,q) =L(q.4)—p 4~ Hp.q) = K(p) + U(q), K = m"7 _P



Legendre transform: graphic intepretation

Given a function of x with the slope u

f(x), with u = g

The Legendre transform is

g () = f(x) —ux,
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Legendre transform

Suppose we have a function F(x,y) where z = (@) then the function G(z, y) is related to F(x, y)
y

0x
by the Legendre transform

G(z,y)=F(xy) —zx

Proof:
oF oF
d(F —zx) = (a>y dx + <@)x dy — zdx — xdz
d(F —zx) = (6_F) dy — xdz using that z = (6_F>
ay X ’ aX y

The y-dependence is not changed thus (Z—i) = (3—5) AlsoG =F(x,y) —zx > x = — (g)
X z y

d(F - 7x) (aF) dy — xd <aa) d +(aG) dz = dG
—7X) = | =— —xdz = [— — | dz=
ay) ay) Y " \az),



Legendre transforms:

ues,v,N)

oU
H(S,P,N) = U(S,V,N) + PV,P = — (_)
oV /s

oUu
F(T,V,N)=U(S,V,N)—TS, T = (_)
S /vy N

G(T,P,N) = U(S,V,N) =TS + PV
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Thermodynamic identities

dU = TdS — PdV + udN
dF = —SdT — PdV + pdN
dH = TdS + VdP + udN

dG = —SdT + VdP + udN
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Thermodynamic square

Extensive variables

Intensive variables

F(T,V) T
Yooy, G(T, P)
/Cf:?/

H(S,P) «— P
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H(S,P) = U(S,V) + PV

G(T,P) = F(T,V) + PV
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Thermodynamic square

Extensive variables Intensive variables

V F(T,V) T

s H(S, P) P

 Derivative of the thermodynamic potential with respect to one of its arguments while keeping the other
constant is determined by going along a diagonal line either with(+) or against(-) the direction of the arrow

=~ (57), =~ (&),

= (50), = 5),

Fys4130, 2019



Thermodynamic square

Extensive variables Intensive variables
v F(T,V) e T
ues,v) «\«e“@ G(T,P)
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G(T,P)=H(S,P)—TS

F(T,V) = U(S,V) =TS
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Thermodynamic square

Extensive variables Intensive variables

V F(T,V) T

s H(S, P) P

 Derivative of the thermodynamic potential with respect to one of its arguments while keeping the other
constant is determined by going along a diagonal line either with (+) or against (-) the direction of the arrow

s==(57), =~ 7).

7= (5), = G5),

Fys4130, 2019



Maxwell’s relations

dU =TdS — PdV

N\

dU ((’)U) ds + (6U> aVv
-~ \as/y v/
1 Thermodynamic potential U is a state variable, which implies that o’y = o°y
Y ’ P 0SoV  9VosS

(& G5),), = G @)y, - ) = - Gs),

1 Other Maxwell relaxations follow from the other thermodynamic potentials

d Used to compute relations between response functions: heat capacities, thermal expansion coefficients



Maxwell’s relations

dF = —=SdT — PdV

o
dF = (6_T)V dT + (W)T dv

O Find the Maxwell’s relation corresponding to F (T, V)



Extensive thermodynamic potentials:

Thermodynamic potentials are extensive functions: invariant under
dilation

« UGS, V,N)=NU(5,V), S=S/NandV =V/N
- H(S,P,N) =NH(S,P), S=5/N

» F(T,V,N) =NF(T,V), V=V/N

* G(T,P,N) = NG(T,P)



Gibbs free energy G(T, P, N) and chemical potential u

L Gibbs free energy G(T, P, N) is an extensive thermodynamic potential. Since,
T and P are intensive variable, the only extensive variable that it depends on is N,
therefore

G(T,P,N) = NG(T,P,1)

<
Combining this with the definition of the chemical potential
n= (G, = 6P = T,P,N
G(T,P,N) Gy = Nu
Q u(T,P) = ===,  G(T,P,N) = Nu(T,P)

Chemical potential is the Gibbs free energy per unit particle at fixed pressure P and temperature T

» This means that when we add a particle to the system, its Gibbs enery increases by one unit equal to u
» By adding more particles we dont change the value of u: each particles comes with the same amount

of energy indepent of the density of particles in the system when we keep the pressure and
temperature constant!

» In all the other thermodynamics conditions described by U, H and F, u can vary with N

Fys4130, 2019
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Gibbs-Duham relation:

Gibbs free energy: G = U—TS + PV = Nu
Euler equation: U=ST—PV + uN

dG = —SdT + VdP + udN = Ndu + udN -
Gibb-Duham relation SdT —VdP + Ndu = 0

For a multi-component system at constant T and P

z Nid.“i =0
[

Thermodynamic equilibrium condition for the chemical potentials in multi-
component systems



Heat Capacity at constant volume Cy,

How much heat is needed to raise the T of an object by a small amount AT by keeping the volume constant?

Cy = (a—Q) . [G]=1]K1?

aT /y
Reversible process: 6Q = TdS — Cy = (T %)V
TdS—dU+PdV—(aU) dT+[P+( )]dV Cy (au)
= ~\oT Ty

So, if we know the heat capacity of a system, we can immediately estimate the change in its internal energy and entropy upon a reversible
changein T at fixed V

dr
dU — CVdT, dS — CVT



Heat Capacity at constant pressure Cp

How much heat is needed to raise the T of a system by a small amount dT when keeping the pressure constant?

Cp = <Z_§)p’ [Cp]=1]K2

Reversible process: 6Q = TdS — Cp = (T Z_i)
P

ras = av+pav = (22) ar+(22) ap+pav - ¢ = (22) +p(2Y) - cp = (LLEPD)
= =\|\== — - =|— —] - =
oT ) p P/ ; F=—\ot/p ar)p  F aT Jp
C _("_H)
P—\oar/p

So, if we know the heat capacity of a system, we can immediately estimate the change in its enthalpy and entropy upon a reversible change in T at fixed
P

dr
dH == deT, dS = CPT

o= 6+ [P+ (29 | () . for ideat gas: co = ¢+
p = Cy av). | \ar P,forlea gas: Cp = Cy



Compressibility and thermal expansion
coefficients

How much the volume changes upon changes in pressure at constant temperature or entropy?’

B 1(0V) -0
="y \apr),

B 1<0V> -0
=7y \ap)/;

How much the volume changes upon changes in temperature at constant pressure?

_1(6V
“=y

57), >0

v
N

ldeal gas: Kk =



Thermodynamic stability

* Response functions Cy, Cp, K1, Kg, @ are positive well-defined quantities

* An equilibrium state is stable upon thermal fluctuations as long as the
system sponteneously returns to this state every time it is kicked away
from it (by thermal fluctuations)

* When this condition fails, the thermodynamic state becomes unstable
and the system undergoes a phase transition



Thermodynamic stability

Spontaneous fluctuations in an isolated system can bring the system out of its equilibrium state.

Thermodynamic stability of an equilibrium state is that a spontaneous fluctuation will increase the energy of the isolated
system Ugipa) > Ugq- Then, the system will sponteneouly return to its favored equilibrium

Denote 6U = Ufinal — Ueq, oS = Sfinal - Seq, oV = Vfinal - Veq
SU = (au> 5S + <au) s+ 2[( 2% 552 42 (29 \sssv + (29 sv2] = 0
-~ \ds 1% 2 [\ asz aSoV vz
Using that dU = TdS — PdV
0°U 5S% + 2 0°U 5SSV + 0°U SV >0
_)
952 asSaolV vz
920 _ (a1 _ T U\ _ _(opy _ 1
) (F) B (aS)V - Cy = 0, (aVZ) B (aV)S B VKs =0

2 2 2 2
(G- () =0~ ()=
052/ \ov?2 oSOV ov/)s — VCyks




Phase transitions

Liquid-Gas coexistance phase boundary

Equilibrium conditions along the coexistance curb:

T, =Ty, Hi = Hg
dG =0

w(T,P) = uy(T, P)

w (T +dT,P +dP) = u,(T +dT,P + dP)

du; = dug
Using Gibbs-Duham equation
_SldTl + vldPl = —Sngg + vgdPg

Clausius-Clapeyron equation
dP _ Sg — 5 A

dT_vg—vl_T(vg—vl)

Forv, LK v, = %T
dP AP p=C _k_AT
~ - P =
dT ~ kT? °
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Phase transitions

Liquid-Gas coexistance boundary

Equilibrium conditions along the coexistance curb:

g’ I, =1y, Hi = Hg
dG =0

w(T,P) = uy(T, P)

w (T +dT,P +dP) = u,(T + dT,P + dP),

du; = dug
Using Gibbs-Duham equation
—SldTl + vldPl = —Sngg + Ugdpg

Clausius-Clapeyron equation
dP _ Sg — 8 A

dT vy,—v; Tw,;—v)

For v, K vy, z%T
dP AP p=c _k_AT
ar “krz 0 T °
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Phase transitions

* Discontinuous PT: first order derivative of the
thermodynamic potential (TP) has a discontinuity
across a phase boundary

. 0G . . :
* v, # v; this — is discontinuous
9 oP

. 9G s :
e S, # 5, this— = —S§ is discontinuous
g oT

e Continuous PT: second order derivative of the

thermodynamic potential has a singularity
* Heat capacity at the critical point of fluids

* Magnetic susceptibility at the para/ferromagnetic

transition
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critical point
O S
o LIQUID
£ PHASE
Q o) S
- g S
o &
= 9
7 &
B SOLID
y PHASE
GAS |
p PHASE |
3 [T . ) i
1 triple point !
&Q§Q
S
T3 Tc

Temperature, T

liquid vapor
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