
Lecture 2
16.01.2019

Thermodynamic potentials, response functions and Maxwell’s 
relations, thermodynamic stability
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Summary lecture 1

• Thermodynamic laws are encapulated in the thermodynamic inequality

!" ≤ $!% − '!(
• Entropy cannot be calculated solely from thermodynamics because the 

expression is determined up the entropy constant and not extensive 
%(", (,+) = + . /

0 12
"
+ + 12( + 45

A consequence of an non-extensive entropy is the Gibbs paradox: the gas entropy changes even when 
there is no change in the thermodynamic state of a gas
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Classical mechanics versus thermodynamics

q In classical mechanics, the stable equilibrium of a mechanical system is related to the minimum of its potential energy 

Fys4130, 2019

Potential energy in 
classical mechanics 

Variables

V(x,y,z) x, y, z

Driving force to 
equilibrium

! = −$%
& = − d()*

((*)

*

What is the analogue of this for a thermodynamic system?  
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Free energies as thermodynamic potentials
q Describe the thermodynamic state of a system depending on how the 

system interacts with its environment 

qWhen a system is isolated, the thermodynamic potential that is 
minimized at equilibrium is its internal energy !

q But, when a system is at equilibrium with a thermal bath at fixed ", 
which energy is then minimized? 

q When a system is at equilibrium with a reservoir at fixed "and #, which 
energy is then minimized? 

Thermodynamic 
Potentials

Thermodynamic 
(natural) 
Variables

U (S,V,N) S, V, N

H (S,P,N) S, P, N

F (T,V,N) V, T, N

G (T,P,N) P, T, N
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Potential energy in 
classical mechanics 

Variables

V(x,y,z) x, y, z
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Isolated systems and internal energy !(#, %, &)

q Sum of all the kinetic and potential energies of all the particles in the system

q An infinitesimal dU is due to infinitesimal and independent changes in #, %, or &

dU = -!
-# .,/

d# + -!
-% 1,/

d% + -!
-& 1,.

d&

q Identify it with the thermodynamic identity  for energy change in a reversible process

23 = 425 − 728 + 92:

we can define ;, < and = from changes in ! with respect to their conjugate variables

T = ?@
?1 .,/

, < = − ?@
?. 1,/

, = = ?@
?/ 1,.

«ability to exchange energy», «ability to exchange volume»,  «ability to exchange particles»
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#, %, &
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Isolated systems and internal energy !(#, %, &)

q From the 2nd law of thermodynamics, the entropy change satisfies this inequality

(d# ≥ dU + -d% − /d&

Hence the change in the internal energy satisfies this thermodynamic inequality   

01 ≤ 345 − 607 + 809

Then any change in the internal energy when #, %, and & are fixed is    01|=,9,7 ≤ >

Which is to lower the internal energy to its miminum value at equilibrium 

q Reversible process in an isolated system at fixed #, %, and N means that 1 is conserved: 

@! = 0, ℎDEFD GH = −GI
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#, %, &
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Systems at constant ! and Enthaly ((*, !, ,)
q The enthalpy . is the thermodynamic potential given by the internal 

energy of a system plus the work needed to keep the system at a given !

( = 0 + !2

q It is the energy to create something (system) out of nothing and make room for 
it somewhere (environment) 

q An infinitesimal change in ( is due independent, infinitesimal changes in *, !, ,

d( = 45
46 7,8

d* + 45
47 6,8

d! + 45
48 6,7

d,

By defining 9 = 45
46 7,8

, 2 = 45
47 6,8

and : = 45
48 6,7

q Thermodynamic identity for an infinitesimal reversible process

;. = <;= + >;? + @;A
Fys4130, 2019

D. Schroeder

!*, !, ,
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Systems at constant ! and Enthaly ((*, !, ,)
q Thermodynamic identity for an infinitesimal reversible process

d( = 01 + 0(!3)

Combing this with the 2nd law of thermodynamics, 

01 ≤ 50* − !d3 + 7d,

q Thermodynamic inequality for any infinitesimal process (reversible «=», irreversible 
«>»)

01 + 0 !3 ≤ 50* + 3d! + 7d,

89 ≤ :8; + <=> + ?8@

Ø Any change in enthalpy H when *, P, and , are fixed is  89|;,>,@ ≤ C. This is to lower 
9 to its miminum value at equilibrium 

Ø Reversible process at fixed *, >, and N means that 9 is conserved: 0(|F,G,H = 0
Ø Reversible process at fixed >, and N means that : 0(|G,H = 50* = JKLMN
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!*, !, ,

8



Systems at constant ! and Enthaly ((*, !, ,)
q System + surrounding at constant pressure = isolated system 

q System can exchange work with the surrounding, thus from the
conservation of energy

d / + /1233 = 0 → 7/ = −7/1233 → −9: = 9:1233

q Principle of maximum work

9: ≤ !7< → 7/ ≤ −!7<

q Pressure is	constant,	thus this spontaneous process will minimize enthalpy at	
equilibrium

7 / + !< ≤ 0 → 7( ≤ 0

q Working with enthalpy ,	we can describe the system	in	contact with its
surrounding at	constant ! without actually keeping track of the transformations
in	the surroundings
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D. Schroeder
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Joule-Thomson expansion: constant enthalpy
! = # → %& = −(

Work done	on the gas	at	67=const:	

(7 = :
;7

#

67 <; = −67;7

Work	done	by		the gas	at	6? = @ABCD:	

(? = :
#

;?
6? <; = 6?;?

Total	work to	move the gas	from	one chamber to	the other

−( = −(7 −(? = 67;7 − 6?;?

6?
67

Fys4130, 2019

6?

67

Final

Initial
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Joule-Thomson expansion
!" = −% →

"' − "( = )(*( − )'*'

"( + )(*( = "' + )'*'

This	expansion is	at	constant enthalpy

!; = ! " + )* = <

)=
)>
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Systems at constant ! and Helmholtz free energy "(!, %, &)
q The Hemholtz free energy ( is the thermodynamic potential given by the 

internal energy of a system minus the available heat exchange with the thermal 
bath fixed !

" = * − !,

q It is the energy to create something (system) out of nothing when there is “free” heat 
supply from the environment 

q An infinitesimal change in " is due to independent, infinitesimal changes in !, %, &

d" = ./
.0 1,2

dT + ./
.1 0,2

d% + ./
.2 0,1

d&

By defining S = − ./
.0 1,2

, 6 = − ./
.1 0,2

and 7 = ./
.2 0,1

q Thermodynamic identity for an infinitesimal reversible process

8( = −9:; − <:= + >8?
Fys4130, 2019

!, %, &!

@
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Fys4130, 2019

!, #, $
!

%

q The system + its thermal bath = isolated system. Hence total internal energy is conserved
& ' + ')*+, = 0 → &' = −&')*+,

q System can exchange heat with its thermal bath, while both maintained the same 
temperature !. Using the conservation of energy and Clausius inequality

1%)*+, = −1% = −&' →
1%)*+,
!

= −
&'
!
≤ &3)*+,

q Hence, the change in the total entropy, S5 = 3 + 3)*+,, is

&3 + &3)*+, ≥ &3 −
&'
!
≥ 0 →

!&3 − &'
!

≥ 0

q Minimizing the Helmholtz free energy is	equivalent to	maximizing the total	entropy

NOP ≥ Q → N R − SO ≤ Q → NT ≤ Q

• Describing the system by its Helmholtz free energy, we capture the evolution of both the 
system and its thermal bath in accord to the thermodynamic principles 
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Systems at constant ! and Helmholtz free energy "(!, %, &)
q Thermodynamic identity for an infinitesimal reversible process

d" = −+,! − -,% + /d&
Combing this with the 2nd law of thermodynamics, 

,0 ≤ !,+ − -d% + /d&

q Thermodynamic inequality for any infinitesimal process (reversible «=», irreversible «>»)

,0 − , !+ ≤ −!,+ − -,% + /d&

23 ≤ −425 − 678 + 92:

Ø Any change in " when T, V, and & are fixed must be 23|5,8,: ≤ @. This is to lower 3 to its 
miminum value at equilibrium 

Ø Reversible process at fixed 5 , %, and N means that " is conserved: ,"|C,D,E = 0
Ø Reversible process at fixed 5, and N means that : ,"|C,E = −-,%
Ø Changes in " at a fixed T equals to the available work that a system can do. 

Fys4130, 2019

!, %, &!

G
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Systems at constant ! "#$ % and Gibbs free energy G(!, %, ))
q The Gibbs free energy + is the thermodynamic potential given by the internal 

energy of a system minus the available heat exchange plus the work done on 
the reservoir

, = . − !0 + %2

q It is the energy to create something (system) out of nothing and put into an 
environment when there is “free” heat

q An infinitesimal change in , is due to independent, infinitesimal changes in !, %, )

d, = 45
46 7,8

dT + 45
47 6,8

d% + 45
48 6,7

d)

By defining S = − 45
46 7,8

, 2 = 45
47 6,8

and ; = 45
48 6,7

q Thermodynamic identity for an infinitesimal reversible process

<= = −>?@ + A?B + C<D

Fys4130, 2019

!, %, )!, %

E

D. Schroeder
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Systems at constant ! "#$ % and Gibbs free energy G(!, %, ))

q Thermodynamic identity for an infinitesimal reversible process

d, = −/$! + 1$% + 2dN
Combing this with the 2nd law of thermodynamics, 

$4 ≤ !$/ − %$1 + 2d)

q Thermodynamic inequality for any infinitesimal process (reversible «=», irreversible «>»)

$4 − $ !/ + $ %1 ≤ −!$/ + 1$% + 2d)

67 ≤ −869 + :6; + <6=

q Any change in the Gibbs free energy , when T, P, and ) are fixed must be 67|9,;,= ≤ C
Which is to minimize G at equilibrium 

q Reversible process at fixed 9 ,;, and N means that , is conserved: $,|D,E,F = 0
q Reversible process at fixed 9, and P means that : $,|D,E = 2$)
q Changes in , at a fixed T and P equals to the available chemical work to increase or decrease 

the number of particles, or any other work which is not mechanical 

Fys4130, 2019

!, %, )!, %

H
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• The extensive variables (!, #, $) and intensive variables (%, &, ') are conjugate variables  
When one is an independent (control) variable fixed by the surroundings, its conjugate variable is a derivative: 

When S is / 0123415 6/47/859 3ℎ92 % =
<=
<! >,?

• Variables like ! are hand to control experimentally, hence it is better to transform the internal energy = into another
thermodynamic potential that has instead % as a natural variable 

• Legendre transform does precisely this: it is a transformation from one thermodynamic potential to another by changing
between conjugate variables

Example: the transformation from internal energy =(!, #, $) to entalphy B(!, &, $)

= !, #, $ → B(!, &, $)

B !, &, $ = = !, #, $ + &#,Eℎ949 & = −
<=
<# G,?

Example in mechanics: 

H I, İ = K İ − L I , M =
NH
Nİ

−O M, I = H I, İ − M İ → O M, I = K M + L I , K = P
İQ

Q
=
MQ

QP

Thermodynamic potentials are related by Legendre transforms
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Given	a	function of x	with the slope u		

3 4 , 6789 : = <3
<4

The Legendre transform is 

= : = 3 4 − :4,

Legendre transform: graphic intepretation

Fys4130, 2019

?

@
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Suppose we have a function F ", $ where  z = '(

') *
then the function + ,, $ is related to F ", $

by the Legendre transform 

-(/, 0) = 2(3, 0) − /3

Proof: 
5(6 − zx) =

86

8" *
5" +

86

8$ )
5$ − ,5" − "5,

5 6 − zx =
86
8$ )

5$ − "5,, :;<=> ?ℎA? z =
86
8" *

The y-dependence is not changed thus '(

'* )
=

'B

'* C
. Also + = 6 ", $ − ," → " = −

'B

'C *

5 6 − zx =
86

8$ )
5$ − "5, =

8+

8$ C
5$ +

8+

8, *
5, = 5+

Legendre transform
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U ", $, %

H ", ', % = ) ", $, % + '$, ' = −
,)
,$ -,.

/ 0, $, % = ) ", $, % − 0", 0 =
,)
," 1,.

G 0, ', % = )(", $, %) − 0" + '$

Legendre transforms: 

Fys4130, 2019

Thermodynamic	identities

dU = 0D" − 'D$ + ED%

dF = −"D0 − 'D$ + ED%

dG = 0D" + $D' + ED%

dH = −"D0 + $D' + ED%
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Thermodynamic square 

Fys4130, 2019

V T

PS

!(#, %)

'(#, ()

)(*, ()

+(*, %)

Extensive variables Intensive variables 

Mechanical

, -, . = 0 -, 1 + .1

3 4, . = 5 4, 1 + .1
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Thermodynamic square 

Fys4130, 2019

V T

PS

!(#, %)

'(#, ()

)(*, ()

+(*, %)

Extensive variables Intensive variables 

q Derivative of the thermodynamic potential with respect to one of its arguments while keeping the other 
constant is determined by going along a diagonal line either with(+) or against(-) the direction of the arrow 

, = − /0
/1 2

= − /3
/1 4

1 = /5
/, 4

= /6
/, 2
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Thermodynamic square 

Fys4130, 2019

V T

PS

!(#, %)

'(#, ()

)(*, ()

+(*, %)

Extensive variables Intensive variables 

Thermal

, -, . = 0 1, . − -1

3 -, 4 = 5 1, 4 − -1
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Thermodynamic square 

Fys4130, 2019

V T

PS

!(#, %)

'(#, ()

)(*, ()

+(*, %)

Extensive variables Intensive variables 

q Derivative of the thermodynamic potential with respect to one of its arguments while keeping the other 
constant is determined by going along a diagonal line either with (+) or against (-) the direction of the arrow 

, = − /0
/1 2

= − /3
/1 4

1 = /5
/, 2

= /6
/, 4
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Maxwell’s relations 
!" = $!% − '!(

!" = )"
)% *

!% + )"
)( ,

!(

q Thermodynamic potential " is a state variable, which implies that  -
./

-,-* =
-./
-*-,

)
)(

)"
)% * ,

= )
)%

)"
)( , *

→ )$
)( ,

= − )'
)% *

q Other Maxwell relaxations follow from the other thermodynamic potentials

q Used to compute relations between response functions: heat capacities, thermal expansion coefficients  
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Maxwell’s relations 
!" = −%!& − '!(

!" = )"
)& *

!& + )"
)( ,

!(

q Find the Maxwell’s relation corresponding to "(&, ()
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Extensive thermodynamic potentials: 

Thermodynamic potentials are extensive functions: invariant under 
dilation

• U S, V, N = N 'U (S, 'V , (S = S/N and 'V = V/N
• H S, P, N = N 'H (S, P , (S = S/N
• F T, V, N = N (F T, 'V , 'V = V/N
• G T, P, N = N 'G(T, P)
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Gibbs free energy G(#, %, &) and chemical potential (
q Gibbs free energy G(#, %, &) is	an	extensive thermodynamic potential. Since,	

# =>? % are intensive	variable,	the only extensive variable	that it	depends on is	&,	
therefore

B #, %, & = &B #, %, 1

Combining this with the definition of the chemical potential

( = EF
EG H,I

= B #, %, 1 = F H,I,G
G

q ( #, % = F H,I,G
G

, B #, %, & = &((#, %)
Chemical potential is the Gibbs free energy per unit particle at fixed pressure P and temperature T

Ø This means that when we add a particle to the system, its Gibbs enery increases by one unit equal to (
Ø By adding more particles we dont change the value of (: each particles comes with the same amount

of energy indepent of the density of particles in the system when we keep the pressure and 
temperature constant!

Ø In all the other thermodynamics conditions described by U,H and F, µ can vary with N

Fys4130, 2019

#, %, &
BG = &(

(
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Gibbs-Duham relation: 
Gibbs	free energy:				 - = / − 12 + 45 = 67
Euler equa5on: / = 21 − 45 + 76

8- = −281 + 584 + 786 = 687 + 786 →

Gibb-Duham relation CDE − FDG + HDI = J

For	a	multi-component system	at	constant T	and	P,	

R
S

6S87S = 0

Thermodynamic equilibrium condition for the chemical potentials in multi-
component systems
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Heat Capacity at constant volume !"
How much heat is needed to raise the # of an object by a small amount d# by keeping the volume constant?  

!" ≡
&'
&# "

, !" = 1 J K-.

Reversible process: /0 = 123 → !" = # 56
57 "

#89 = 8: + <8= = &:
&# "

8# + < + &:
&= 7

8= → >? =
@A
@1 ?

So, if we know the heat capacity of a system, we can immediately estimate the change in its internal energy and entropy  upon a reversible
change in T at fixed V

2A = >?21, 23 = >?
21
1

Fys4130, 2019 30



Heat Capacity at constant pressure !"
How much heat is needed to raise the # of a system by a small amount d# when keeping the pressure constant?  

!" ≡
&'

&# "
, !" = 1 J K-.

Reversible process: /0 = 123 → !" = #
56

57 "

#89 = 8: + <8= =
&:

&# "
8# +

&:

&< 7
8< + <8= → >? =

@A

@1 ?
+ ?

@B

@1 ?
→ >? =

@(A + ?B)

@1 ?

>? =
@E

@1 ?

So, if we know the heat capacity of a system, we can immediately estimate the change in its enthalpy and entropy  upon a reversible change in T at fixed 
P

2E = >?21, 23 = >?
21

1

!" = !F + < +
&:

&= 7

&=

&# "

, GHI J8KLM NLO: !" = !F + QR
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Compressibility and thermal expansion 
coefficients  

How much the volume changes upon changes in pressure at constant temperature or entropy?  

!" = − 1&
'&
'( "

> 0

!+ = − 1&
'&
'( +

> 0
How much the volume changes upon changes in temperature at constant pressure?

, = 1
&

'&
'- .

> 0

Ideal gas:      !" = /
., , = /

"
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Thermodynamic stability 

• Response functions !", !$, %&, %', ( are positive well-defined quantities

• An equilibrium state is stable upon thermal fluctuations as long as the
system sponteneously returns to this state every time it is kicked away
from it (by thermal fluctuations)

• When this condition fails, the thermodynamic state becomes unstable
and the system undergoes a phase transition
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Thermodynamic stability 
Spontaneous fluctuations in an isolated system can bring the system out of its equilibrium state. 
Thermodynamic stability of an equilibrium state is that a spontaneous fluctuation will increase the energy of the isolated
system U"#$%& > U().   Then, the system will sponteneouly return to its favored equilibrium

Denote *+ = +-./01 − +34, *6 = 6-./01 − 634, *7 = 7-./01 − 734

*+ =
8+
86 9

*6 +
8+
87 ;

*7 +
1
2

8>+
86>

*6> + 2
8>+
8687

*6*7 +
8>+
87>

*7> ≥ 0

Using that A+ = BA6 − CA7

8>+
86>

*6> + 2
8>+
8687

*6*7 +
8>+
87>

*7> ≥ 0 →

• EFG
E;F

= EH
E; 9

= H
IJ
≥ 0, EFG

E9F
= − EK

E9 ;
= L

9MN
≥ 0

• EFG
E;F

EFG
E9F

− EFG
E;E9

>
≥ 0 → EH

E9 ;

>
≥ H

9IJMN
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Phase transitions

P

T

Liquid-Gas coexistance phase boundary 

L
G

Equilibrium conditions along the coexistance curb: 

!" = !$, &" = &$, '" = '$
() = 0

'" &, ! = '$(&, !)

'" & + (&, ! + (! = '$(& + (&, ! + (!)

('" = ('$
Using Gibbs-Duham equation 

−/"(&" + 0"(!" = −/$(&$ + 0$(!$

Clausius-Clapeyron equation
(!
(& =

/$ − /"
0$ − 0"

= Λ
&(0$ − 0")

For 0" ≪ 0$ ≈ 45
6

(!
(& ≈

Λ!
7&8 → ! = : ;<

=
45
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Phase transitions

!

T

Liquid-Gas coexistance boundary 

Equilibrium conditions along the coexistance curb: 

"# = "%, '# = '%, (# = (%
)* = 0

(# ', " = (%(', ")

(# ' + )', " + )" = (%(' + )', " + )")

)(# = )(%
Using Gibbs-Duham equation 

−0#)'# + 1#)"# = −0%)'% + 1%)"%

Clausius-Clapeyron equation
23
24 =

56 − 57
86 − 87

= !
4(86 − 87)

For 1# ≪ 1% ≈ ;<
=)"

)' ≈
Λ"
?'@ → " = B CD

E
;<

↔

4G
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Phase transitions

https://glossary.periodni.com/glossary.php?en=gallery%2Fimages.php

• Discontinuous PT: first order derivative of the 
thermodynamic potential (TP) has a discontinuity 
across a phase boundary 
• !" ≠ !$ this %&%' is discontinuous 

• (" ≠ ($ this %&%) = −( is discontinuous

• Continuous PT:  second order derivative of the 
thermodynamic potential has a singularity 
• Heat capacity at the critical point of fluids 
• Magnetic susceptibility at the para/ferromagnetic 

transition
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