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Canonical ensemble



Phase space and ensemble density . ncona i

* (p, q)ZdN = (pb ) PdN> qlr"'rCIdN)

* A state of the N particles that specify the position and P4
momentum of each particles is given by a representative point in (q(t),p(1))

the phase space (p, q)

» Ensemble density p(p, q) is the probability density of finding the
system in state (p, q p(p,q)

dw

J oo, @dw =1
Number of systems which occupy the microstates between (p, g) and ¢
0

(p +dp,q+dq)is
>
p(p,q)dw q

» Macroscopic thermodynamic variables are determined as averages

over p(p, q)
(FY®) = [ p(p,q,t) F(p,q)dw



Liouville’s theorem for equilibrium systems

dp OH

ap 3N lap 0H

ot~ “=11aq; ap

* For systems in thermodynamic equilibrium, all the averages are time-

opi 0q;

] =0 - % +{p,H} =0 Liouville’s theorem

independent, hence the density of states is time-independent

e Liouville’s equation implies then that

{p,H} =0

* General solution of ensemble density commutes with the

Hamiltonian

p=p(H)
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Statistical Equilibrium Ensembles

Microcanonical ensemble: p(p,q) ~ const.at fixed U — p(p,q) = %6(H(p, q) —U)

d3di3Nq
(2mh)3N

e Microcanonical density of states: Z(U,V,N) = [ dw §(H(p,q) — U),dw =

Describes a system at a fixed energy, volume and number of particles

Each possible state at fixed U and N has an equal probability

Phase space volume: Q(U,V,N) = [, ydw §(H(p,q) — U)

(».9)

Boltzmann’s formula (correspondence to thermodynamics)
Entropy: S(U,V,N) = kIn [Q(U,V,N)]
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Statistical Equilibrium Ensembles

outside world

e Canonical ensemble. Derive that the equilibrium distribution of canonical

ensembles

_H(p,q)
p(p,q) ~e kT

* describes a system at a fixed volume and number of particles, and
that is thermal equilibrium with a heat bath at a fixed temperature T

* The energy fluctuates according to a probability distribution function
(PDF) P(E) determined by p(p, q)

* Internal energy U of the thermodynamic system is fixed by T and
determined as an average U = (E)
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Canonical ensemble

* Describes a system that is in thermal equilibrium
with a heat bath at a fixed temperature T

e system+heat bath = isolated system

* Heat bath=ldeal gas (P,Q) with Hamiltonian

3N
e(P) = z ——, N; particles in 3D

 Ensemble density for the isolated system is in the
microcanonical ensemble at a fixed energy U, ¢a1

p(p' q,P, Q) ~ S(H(p, q) + E(P) _ Utotal)




Canonical ensemble Z(T,V,N)

p(»,q,P,Q) ~8(H(,q) + €(P) — Uotar)

3N¢

)=y &
€ = —
* Integrate out the thermal bath d.o.f. (P, Q) to find the ensemble density of = 2m
the system - ¢ v °
° ()
p(p,q) ~ f d*"eQ d*"eP 6(H(p, q) + €(P) — Urotar)
o H(p,q)
p(p,q) ~ | dw, 5(H(p,q) + €(P) — Uorar) o
()
* Phase space volume of ideal gas in the thermostate w;(€) ~ EBTNt

3N¢

* Change of variables dw; ~ € 2 lde
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Canonical ensemble Z(T,V, N) T

it
P, @) ~ | dwd(H(p, q) + €(P) = Urorar)

3N .

* Phase space volume of ideal gas thermostate w.(€) ~ e¥ . €(P) !: 4 $
e Change of variables dw; ~ GSTNt “lde . o -

Ny, . H(p, q)
* p(p,q) ~fd€ € 2 S(H(p,q) — Ut + €) . o
-1 H(p.q) BTNt_l :
* p(p,q) ~ (Utotal — H(p, CI)) ’ - (1 - Utotal)

(keep onlyt the p, g — dependent terms)
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Canonical ensemble

* The total energy U,,t4 is dominated by the energy of the thermostate, hence it depends on the temperature
and the number of particles in the thermostat as

3
Utotar = € = ENtkT

« Substitute this in the expression for the ensemble density

3N: 4 3N¢
H(p, 2 H(p, 1 2
p(p,q) ~ (1 — (2(9] q)) ~ (1 — (Iqu) 3Nt> , for N, — oo approaches
2
_H{pq)

p(p,q) ~e kT



P(s)

U(T)

System+Thermal bath (R) = isolated system

The probability that the system is in a given microstate is proportional to the
probability that the thermal bath is in any state that accomodate the
particular microstate of the system (hence the probability to be in a
macrostate )

The system can exchange energy with the thermal bath Ae = —AE
Probability ratio between two microstates ( (p1,q1) = 51, (P2, q2) = 52 )

AS A AE Eq
p(p1,91) _ Qr(s1) _ R ek_TE‘ e o~ e B
p(p1,q1) Qgr(sz)
E(s) =H(p,q)

Probability of the system in a specific configuration at fixed temperature T

H(p.q)
e kT
Z(T)

p(p,q) =




Canonical ensemble Z(T,V, N)

e 1 Ak
Boltzmann’s distribution p(p, q) = ,€ M

From the normalization condition [ dwp(p,q) =1 -

_Hpq)
Z = [ dwe kT

Canonical Partition function

H(p,q)
Z(T,V,N) = sum over all states weighted by Boltzmann factor e kT

Z(T,V,N) does not depend on the nature of the thermostat
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Canonical ensemble: Energy fluctuations

* Number of systems in a macrostate with energy between E and E + dE equals the number of
systems that occupy the corresponding microstates between (p,q) and (p + dp, q + dq)

P(E)dE = p(p,q)dQ
* Using the canonical distribution of the density of states

1 d()
PE) = p(p,0) || > P(E) = e |2
2(E) _E
PE=7m)° ”

macrostate microstate



Ensemble equivalence

* Correspondence between microcanonical and canonical ensembles

 Laplace transform of the microcanonical density of states X(E)

Z(T,V) = [ dw e PH@D, p= 2

Z(T,V) = [ dw [ dEe PES(H(p,q) — E)]
Z(T,V) = [ dE e PE[[ dwS(H(p, q) — E)]

Z(T,V) = [ dE e PEX(E)

2(E)

« Normalization condition for P(E) = e PE. [dE P(E)=1- Z(T,V) = [ dE e FEX(E)



Thermodynamic correspondence

* Correspondence between different thermodynamic constraints:
Legendre transform: F(T,V) =U(S,T) — TS

* Correspondence between different statistical ensembles:
Laplace transform:

Z(T) = [ dE e PE X(E),where X(E) ~ Q(E) = e

& @

Z(T) = [ dE e PE-TS) ~ e=BUEI-TS(EN)

» Z(T) = e PFM, F(T) = (E)(T) — TS((E))
« F(T) = —KT In [Z(T)]



Canonical ensemble: average energy

The average energy corresponds to the internal energy U of the
thermodynamic system and is fixed by T

* Average energy
1
(E) = [ dw H(p,q) e FH®D

0

— _ﬁH(p;Q)
7D a'[))fda) e

(E) =

9 9
Z(T) = —— In Z(T)

1
E) = =71 ap FY;




Canonical ensemble: average energy

The average energy corresponds to the internal energy U of the
thermodynamic system and it is fixed by T

* Average energy
(E) = [ dE E P(F)

1 _
(E) = mdeEe BEY(E)

1 0 B
(E) = ‘ﬁﬁ”’“ BEY(E)

Z(T) = — 9 I Z(T)

1
E) =71 ap Y,



Canonical ensemble: average energy

* Average energy

d
U=(E)= ~ 3B log Z(T)

* The system has the highest probability to have an energy given by the average U

« P(E) = eﬁ(E TS(E))
* Letus Iook at the distribution of energy around the mean: E = U + §E

192%s

¢ S(E) =SU) + 22 |p_yOF + 25—

— |g=y0E? +

10 /1
=SWU) += 5E+——(—) SE? +

20U '

1 ) U
=SWU) + = 6F — >O0E~ + -
T 2CyT el
O = 4/ CvaZ, P(E) ~ eZGE

__ 1 g2
P(E) = l eB(U-TS()) ;™ 2CykT? (E=U) op _yGkT 1 1
Z U U c, VN



Canonical ensemble: energy fluctuations

* Fluctuations around the average energy

of = ((E —(E))?) = (AE?) = (E?) — (E)?

o (F2y—_1 2 —BE
(E)—Z(T)deE e PEX(E)

1 02

- (E?) =z a2 2 (1)
C(AEY) =12 g (10 _ 9
<AE>_zaﬁZZ (ZGBZ) —aﬁzlogz
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Canonical ensemble: Ideal gas

pl

* Z(T V N) = (2 h)3Nfd3qu3Np Hl _’B_ (Zn-h)SNdeNp l_[l

2 2

3N
(f dp e zvfsz) , fjozo dp e TmiT = \V2mmkT

« Z(T,V,N) =

(2 h)SN

VN 3N

« Z(T,V,N) = Gy (2mnkT) 2
vN 1
- AN (T where A(T) = T is the thermal wavelength of a particle



Canonical ensemble: Ideal gas

VN
+ Z(T,V,N) = =5 = Z}

* Particles are indistinguishable, thus we must divide the N-particle
partition function by N'!

v zy
NIASN — NI
Thermodynamic correspondence

Z(T,V,N) = ~PETV.N)

— €

N

Z3
Z(T,V,N) = W = e AF(I.V.N)
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ldeal gas: Thermodynamics

F(T,V,N) = —kT [ln <XTIIVV> - lnN!], InN! ~ NInN — N
F(T,V,N =—1va[1 ( ) 1]
( ) "N/ T

* Thermodynamic identity: dFF = —SdT — PdV + udN

« §— — (Z_I;)V’N = Nk[In (NAZ(T) + 1) + %k — _FT+U

oF NkT
(), -
av T,N |74

= (8, = o) 1]+ = ) = k= o



|deal gas: energy fluctuations

 Average energy and fluctuations:

N N 3N
« Z(T,V,N) = v = o7 (2mmkT) 2
(E) = 01 , BNEJ‘1 Zﬂm_BNkT N
T TR YT T2 % T 2
(AE?) — 021 ,_ 3N 3N oo o
9Bz 5T T BB T 2
. \/(AEZ)N 1
w "I !



