Lecture 9

13.02.2019

Fermi-Dirac statistics

Maxwell-Boltzmann: indistinguishable particles

- System of identical, indistinguishable and free particles, such that there are n_{1} particles in the energy state ϵ_{1}, n_{2} particles in the energy state ϵ_{2}, \cdots. For a specific partition of the number of particles in each energy state $\left\{n_{i}\right\}$ we have

$$
W\left(\left\{n_{i}\right\}\right)=\prod_{i} \frac{g_{i}^{n_{i}}}{n_{i}!}, \text { number of microstates where } g_{i} \gg 1 \text { corresponds to energy states at } \epsilon_{i}
$$

- The total multiplicity of a macrostate would be a sum over all the partitions $\left\{n_{i}\right\}$ that correspond to the same macroscopic energy $U=\sum_{i} \epsilon_{i} n_{i}$ and $N=\sum_{i} n_{i}$

$$
\Omega(U, N)=e^{S / k}=\sum_{\left\{n_{i}\right\}} W\left(\left\{n_{i}\right\}\right) \approx W\left(\left\{n_{i}^{(e q)}\right\}\right)
$$

The sum is dominated by the partition with the largest number of microstates, which is the equilibrium distribution $\left\{n_{i}^{(e q)}\right\}$

- We determined the equilibrium distribution in the canonical ensemble

$$
\boldsymbol{n}_{\boldsymbol{i}}=\frac{N}{z_{1}} g_{i} \mathrm{e}^{-\beta \epsilon_{i}}, Z_{1}=\sum_{i} g_{i} e^{-\beta \epsilon_{i}}
$$

- Grand-canonical partition functions

$$
\Xi(T, \mu)=\sum_{n} \frac{1}{n!} e^{\beta n \mu} Z_{1}^{n}=e^{\lambda Z_{1}}, \quad \lambda=e^{\beta \mu}
$$

Bose-Einstein distribution: counting of microstates

- Each energy levels ϵ_{i} has a degeneracy g_{i}

Number of ways of arranging n_{i} bosons in g_{i} quantum states with energy level ϵ_{i} :
g_{i} degenerate energy levels $\sim g_{i}$ identical boxes
n_{i} particles $\sim n_{i}$ identical balls
Number of ways of distributing n_{i} balls between g_{i} boxed equals the number of combinations with n_{i} balls and ($g_{i}-1$) -walls between the lined up boxes

$$
\mathrm{W}_{\mathrm{i}}\left(n_{i}, g_{i}\right)=\frac{\left(n_{i}+g_{i}-1\right)!}{n_{i}!\left(g_{i}-1\right)!}
$$

Number of microstates for a partition $\left\{n_{i}\right\}$:

$$
\mathrm{W}_{\mathrm{b}}\left(\left\{\mathrm{n}_{\mathrm{i}}\right\}\right)=\prod_{i} \mathrm{~W}_{i}\left(n_{i}, g_{i}\right)=\prod_{i} \frac{\left(n_{i}+g_{i}-1\right)!}{n_{i}!\left(g_{i}-1\right)!}
$$

- The total multiplicity of a macrostate would be a sum over all the partitions $\left\{n_{i}\right\}$ that correspond to the same macroscopic energy $U=\sum_{i} \epsilon_{i} n_{i}$ and $N=\sum_{i} n_{i}$

$$
\Omega(U, N)=e^{S / k}=\sum_{\left\{n_{i}\right\}} W_{b}\left(\left\{n_{i}\right\}\right) \approx W_{b}\left(\left\{n_{i}^{(e q)}\right\}\right)
$$

Bose-Einstein statistics (grand-canonical)

- Sponteneous fluctuations induce a change in the population number

$$
n_{i} \rightarrow n_{i}+1
$$

- Change in entropy:

$$
\Delta S=k\left[\ln \frac{\left(n_{i}+g_{i}\right)!}{\left(n_{i}+1\right)!}-\ln \frac{\left(n_{i}+g_{i}-1\right)!}{n_{i}!}\right]=k \ln \frac{g_{i}+n_{i}}{n_{i}}
$$

- Change in energy: $\Delta U=\epsilon_{i}$
- Change in number of particles: $\Delta N=1$
- These spontaneous fluctuations are in thermodynamic equilibrium: $T \Delta S=\Delta U-\mu \Delta N$

$$
n_{i}=\frac{g_{i}}{e^{\beta\left(\epsilon_{i}-\mu\right)}-1}
$$

Bose-Einstein statistics

Equilibrium distribution of bosons over energy states

$$
n_{i}=\frac{g_{i}}{e^{\beta\left(\epsilon_{i}-\mu\right)}-1}=\frac{g_{i}}{e^{\beta \epsilon_{i} \lambda^{-1}-1}}
$$

- Grand-canonical partition function

$$
\begin{gathered}
\Xi(T, \mu)=\prod_{i}\left(\sum_{n_{i}=0}^{\infty} e^{-\beta n_{i}\left(\epsilon_{i}-\mu\right)}\right) \\
\Xi(T, \mu)=\prod_{i} \frac{1}{1-e^{-\beta\left(\epsilon_{i}-\mu\right)}}
\end{gathered}
$$

Free fermions: Fermi-Dirac statistics

Fermions: ingistinguishable particles with $\frac{1}{2}$ spin obeying the Pauli exclusion principle Number of ways of arranging n_{i} fermions in g_{i} quantum states at energy ϵ_{i} :

- 1st particle has g_{i} avalaible states, 2nd particle has $\left(g_{i}-1\right)$ possible states, 3rd particle has

$$
\left(g_{i}-2\right), \ldots \text { the } n_{i} \text { th particle has }\left(g_{i}-n_{i}+1\right)
$$

- $g_{i}\left(g_{i}-1\right) \cdots\left(g_{i}-n_{i}+1\right)=\frac{g_{i}!}{\left(g_{i}-n_{i}\right)!}$

Number of microstates for a partition $\left\{n_{i}\right\}$:

$$
W_{f}\left(\left\{n_{i}\right\}\right)=\prod_{i} \frac{g_{i}!}{n_{i}!\left(g_{i}-n_{i}\right)!}
$$

- The total multiplicity of a macrostate $=$ sum over all the partitions $\left\{n_{i}\right\}$ that
 correspond to the same macroscopic energy $U=\sum_{i} \epsilon_{i} n_{i}$ and $N=\sum_{i} n_{i}$

$$
\Omega(U, N)=e^{S / k}=\sum_{\left\{n_{i}\right\}} W_{f}\left(\left\{n_{i}\right\}\right) \approx W_{f}\left(\left\{n_{i}^{(e q)}\right\}\right)
$$

Fermi-Dirac statistics: Grand-canonical ensemble

- Sponteneous fluctuations induce a change in the population number

$$
n_{i} \rightarrow n_{i}+1
$$

- Change in entropy:

$$
\Delta S=k\left[\ln \frac{g_{i}!}{\left(n_{i}+1\right)!\left(g_{i}-n_{i}-1\right)!}-\ln \frac{g_{i}!}{n_{i}!\left(g_{i}-n_{i}\right)!}\right]=k \ln \frac{g_{i}-n_{i}}{n_{i}}
$$

- Change in energy:

$$
\Delta U=\epsilon_{i}
$$

- Change in number of particles: $\Delta N=1$

Equilibrium fluctuations: $\quad T \Delta S=\Delta U-\mu \Delta N \rightarrow k T \log \frac{g_{i}-n_{i}}{n_{i}}=\epsilon_{i}-\mu \rightarrow$

Fermi-Dirac statistics: Grand-canonical

- Equilibrium distribution of the number of fermions in each energy state

$$
n_{i}=\frac{g_{i}}{e^{\beta\left(\epsilon_{i}-\mu\right)}+1}
$$

- Filling fraction $f_{i}=\frac{n_{i}}{g_{i}}$ of the energy state ϵ_{i}

$$
\begin{gathered}
\mathrm{f}_{\mathrm{i}}=\frac{1}{e^{\beta\left(\epsilon_{i}-\mu\right)}+1} \\
f_{i}=\frac{1}{e^{\beta \epsilon_{i}} \lambda^{-1}+1}, \lambda=e^{\beta \mu}
\end{gathered}
$$

Fermi-Dirac statistics

- Average occupation number

$$
n_{i}=\langle n\rangle\left(\epsilon_{i}\right)=\frac{g_{i}}{e^{\beta\left(\epsilon_{i}-\mu\right)}+1}
$$

- Number of particles

$$
N=\sum_{i} n_{i}=\sum_{i} \frac{g_{i}}{e^{\beta\left(\epsilon_{i}-\mu\right)}+1}
$$

- Energy

$$
U=\sum_{i} \epsilon_{i} n_{i}=\sum_{i} \frac{\epsilon_{i} g_{i}}{e^{\beta\left(\epsilon_{i}-\mu\right)}+1}
$$

Classical limit: $f_{i} \ll 1 \leftrightarrow n_{i} \ll g_{i}$ (low density of particles per energy state)

- Fermi Dirac:

$$
W_{F D}\left(n_{1}, n_{2}, \cdots\right)=\prod_{i} \frac{g_{i}!}{n_{i}!\left(g_{i}-n_{i}\right)!}=\prod_{i} \frac{1}{n_{i}!} g_{i} \cdot\left(g_{i}-1\right) \cdots\left(g_{i}-n_{i}+1\right) \approx \prod_{i} \frac{g_{i}^{n}}{n_{i}!}
$$

- Bose Einstein:

$$
W_{B E}\left(n_{1}, n_{2}, \cdots\right)=\prod_{i} \frac{\left(n_{i}+g_{i}-1\right)!}{n_{i}!\left(g_{i}-1\right)!}=\prod_{i} \frac{1}{n_{i}!} g_{i} \cdot\left(g_{i}+1\right) \cdots\left(g_{i}+n_{i}-1\right) \approx \prod_{i} \frac{g_{i}^{n}}{n_{i}!}
$$

- Maxwell Boltzmann:

$$
W_{M B}\left(n_{1}, n_{2}, \cdots\right)=\prod_{i} \frac{g_{i}^{n}}{n_{i}!}
$$

Classical limit: $\epsilon_{i} \ll k T, \mu(T) \ll 0$
 (high-T limit)

- Fermi Dirac/Bose-Einstein distribution:

$$
f_{i}=\frac{1}{e^{\beta\left(\epsilon_{i}-\mu\right)} \pm 1}=e^{\beta \mu} \frac{e^{-\beta \epsilon_{i}}}{1 \pm e^{-\beta \epsilon_{i}} e^{\beta \mu}} \approx e^{\beta \mu} e^{-\beta \epsilon_{i}}
$$

- Maxwell Boltzmann distribution:

$$
f_{i}^{M B}=\frac{N}{Z_{1}} e^{-\beta \epsilon_{i}}=e^{\beta \mu} e^{-\beta \epsilon_{i}}
$$

- Classical ideal gas limit: $\mu=-k T \ln \frac{V}{N \Lambda^{3}(T)} \ll 0 \rightarrow$

$$
T \gg T^{*}=\left(\frac{h^{2}}{2 \pi m k}\right) \rho^{2}, \quad \rho=\frac{N}{V}
$$

Grand-canonical ensemble for free quantum particle

Each identical particle can occupy discrete energy states $\epsilon_{j}, \boldsymbol{j}=\mathbf{1}, 2, \cdots$ is the state number
For N identical particles, there are $\boldsymbol{n}_{\boldsymbol{j}}$ number of particles (occupation number) in the energy state $\boldsymbol{\epsilon}_{\boldsymbol{j}}$

The energy of a specific microstate with $N_{s}=\sum_{j} n_{j}$ particles is $E_{s}=\sum_{j} n_{j} \epsilon_{j}$
$\sum_{s} \equiv$ sum over all particles number N_{s} and over all the partitions of particles \boldsymbol{N}_{s} in the quantum states with total energy E_{S}

$$
\begin{gathered}
\Xi(T, \mu)=\sum_{N_{s}} \sum_{\substack{\left\{n_{j}\right\} \\
\Sigma_{j} n_{j}=N_{S}}} e^{-\beta\left(E_{s}-\mu N_{s}\right)}=\sum_{\left\{n_{j}\right\}} e^{-\beta \sum_{j} n_{j}\left(\epsilon_{j}-\mu\right)} \\
\Xi(T, \mu)=\left(\sum_{n_{1}} e^{-\beta n_{1}\left(\epsilon_{1}-\mu\right)}\right) \cdot\left(\sum_{n_{2}} e^{-\beta n_{2}\left(\epsilon_{2}-\mu\right)}\right) \cdot\left(\sum_{n_{3}} e^{-\beta n_{3}\left(\epsilon_{3}-\mu\right)}\right) \cdots
\end{gathered}
$$

Occupation number of a microstate

Probability of the system in a specific microstate a fixed T and μ

$$
\begin{gathered}
P(s)=\frac{1}{\Xi(T, \mu)} e^{-\beta\left(E_{s}-\mu N_{s}\right)}=\frac{e^{-\beta n_{1}\left(\epsilon_{1}-\mu\right)} \cdot e^{-\beta n_{2}\left(\epsilon_{2}-\mu\right)} \cdot e^{-\beta n_{3}\left(\epsilon_{3}-\mu\right)} \ldots}{\left(\sum_{n_{1}} e^{-\beta n_{1}\left(\epsilon_{1}-\mu\right)}\right) \cdot\left(\sum_{n_{2}} e^{-\beta n_{2}\left(\epsilon_{2}-\mu\right)}\right) \cdot\left(\sum_{n_{3}} e^{-\beta n_{3}\left(\epsilon_{3}-\mu\right)}\right) \cdots} \\
P(s)=\frac{e^{-\beta n_{1}\left(\epsilon_{1}-\mu\right)}}{\left(\sum_{n_{1}} e^{-\beta n_{1}\left(\epsilon_{1}-\mu\right)}\right)} \cdot \frac{e^{-\beta n_{2}\left(\epsilon_{2}-\mu\right)}}{\left(\sum_{N_{2}} e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)}\right)} \cdot \frac{e^{-\beta n_{3}\left(\epsilon_{3}-\mu\right)}}{\left(\sum_{n_{3}} e^{-\beta n_{3}\left(\epsilon_{3}-\mu\right)} \cdots\right.} \\
\boldsymbol{P}(\boldsymbol{s})=\boldsymbol{P}\left(\boldsymbol{n}_{1}\right) \cdot \boldsymbol{P}\left(\boldsymbol{n}_{2}\right) \cdot \boldsymbol{P}\left(\boldsymbol{n}_{3}\right) \cdots
\end{gathered}
$$

Probability for an occupation number \boldsymbol{n} of the given energy level at fixed T and $\boldsymbol{\mu}$

$$
P_{\epsilon}(n)=\frac{e^{-\beta n(\epsilon-\mu)}}{\left(\sum_{n} e^{-\beta n(\epsilon-\mu)}\right)}
$$

Free FERMIONS in grand canonical ensemble

The number of fermions in each energy states can be $n=0,1$

$$
\sum_{n=0}^{1} e^{-\beta n(\epsilon-\mu)}=1+e^{-\beta(\epsilon-\mu)}
$$

Grand-canonical partition function

$$
\Xi(T, \mu)=\prod_{i}\left(\sum_{n_{i}} e^{-\beta n_{i}\left(\epsilon_{1}-\mu\right)}\right)=\prod_{i}\left(1+e^{-\beta\left(\epsilon_{i}-\mu\right)}\right)
$$

Probability for having \boldsymbol{n} fermions in a given energy state a fixed T and $\boldsymbol{\mu}$

$$
P_{\epsilon}(n)=\frac{e^{-\beta n(\epsilon-\mu)}}{1+e^{-\beta(\epsilon-\mu)}}
$$

Average number of fermions $\langle\boldsymbol{n}\rangle$ with energy ϵ a fixed T and $\boldsymbol{\mu}$

$$
\langle n\rangle(\epsilon)=\sum_{n=0}^{1} n P_{\epsilon}(n) \rightarrow\langle n\rangle(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}+1}
$$

Fermi Dirac distribution at $\mathrm{T}=0 \mathrm{~K}$

$n(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)+1}} \rightarrow_{T \rightarrow 0}\left\{\begin{array}{l}1, \epsilon<\mu \\ 0, \epsilon>\mu\end{array}\right.$

$\epsilon_{F} \equiv \mu$ Fermi energy level below which all states are occupied

Fermi-Dirac statistics at $\mathrm{T}=0 \mathrm{~K}$ in 3D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=\left(4 \pi n^{2}\right) d n \rightarrow$

$$
D(\epsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{1 / 2}, \quad V=L^{3}
$$

Fermi-Dirac statistics at $\mathrm{T}=0 \mathrm{~K}$ in 3D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=\left(4 \pi n^{2}\right) d n \rightarrow D(\epsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{1 / 2}, \quad V=L^{3}$

Number of particles

$$
\begin{gathered}
N=\sum_{i}\langle n\rangle\left(\epsilon_{i}\right)=2 \int_{0}^{\infty} d \epsilon D(\epsilon) H\left(\epsilon-\epsilon_{F}\right)=2 \int_{0}^{\epsilon_{F}} d \epsilon D(\epsilon) \\
N=2 \frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \int_{0}^{\epsilon_{F}} d \epsilon \epsilon^{1 / 2}=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \frac{2}{3} \epsilon_{F}^{3 / 2}
\end{gathered}
$$

- Fermi energy $\boldsymbol{\epsilon}_{\boldsymbol{F}}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \rho\right)^{\frac{2}{3}}$
- Fermi temperature $\quad \boldsymbol{T}_{\boldsymbol{F}}=\frac{\epsilon_{F}}{k}=\frac{\hbar^{2}}{2 m \boldsymbol{k}}\left(3 \pi^{2} \boldsymbol{\rho}\right)^{\frac{2}{3}}<\mathbf{T}^{*}=\left(\frac{h^{2}}{2 \pi m k}\right) \boldsymbol{\rho}^{2}$
- Electron gas in metals $\boldsymbol{T}_{\boldsymbol{F}} \sim \mathbf{1 0}^{\mathbf{4}}-\mathbf{1 0}^{\mathbf{5}} \boldsymbol{K} \gg \mathbf{3 \times 1 0 ^ { 2 }} \boldsymbol{K}$ (degenerate gas--- behaves as if it was 0 K for a wide range of $T \ll T_{-} F$)

Fermi-Dirac statistics at T=0 K in 2D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$

Density of states $D(\epsilon) d \epsilon=(2 \pi n) d n \rightarrow D(\epsilon)=\frac{L^{2}}{4 \pi} \frac{2 m}{\hbar^{2}}$

Fermi-Dirac statistics at T=0 K in 2D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=(2 \pi n) d n \rightarrow D(\epsilon)=\frac{L^{2}}{4 \pi} \frac{2 m}{\hbar^{2}}$
Number of particles

$$
\begin{gathered}
N=\sum_{i}\langle n\rangle\left(\epsilon_{i}\right)=2 \int_{0}^{\infty} d \epsilon D(\epsilon) H\left(\epsilon-\epsilon_{F}\right)=2 \int_{0}^{\epsilon_{F}} d \epsilon D(\epsilon) \\
N=\frac{L^{2}}{\pi} \frac{m}{\hbar^{2}} \int_{0}^{\epsilon_{F}} d \epsilon=\frac{L^{2}}{\pi} \frac{m}{\hbar^{2}} \epsilon_{F}
\end{gathered}
$$

- Fermi energy $\quad \boldsymbol{\epsilon}_{\boldsymbol{F}}=\frac{\hbar^{2}}{\boldsymbol{m}} \boldsymbol{\pi} \boldsymbol{\rho}$
- Fermi temperature $\quad \boldsymbol{T}_{\boldsymbol{F}}=\frac{\boldsymbol{\epsilon}_{\boldsymbol{F}}}{\boldsymbol{k}}=\frac{\hbar^{2}}{\boldsymbol{m}} \boldsymbol{\pi} \boldsymbol{\rho}$

Fermi-Dirac statistics at $\mathrm{T}=0 \mathrm{~K}$ in 1D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=d n \rightarrow D(\epsilon)=\frac{L}{4 \pi}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{1}{2}} \epsilon^{-1 / 2}$

Fermi-Dirac statistics at T=0 K in 1D

Ideal gas: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|n|^{2}$
Density of states $D(\epsilon) d \epsilon=d n \rightarrow D(\epsilon)=\frac{L}{4 \pi}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{1}{2}} \epsilon^{-1 / 2}$

$$
N=2 \int_{0}^{\epsilon_{F}} d \epsilon D(\epsilon)=\frac{L}{\pi}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{1}{2}} \epsilon_{F}^{\frac{1}{2}} \rightarrow \epsilon_{F}=\frac{\hbar^{2}}{2 m}(\pi \rho)^{2}
$$

Number of particles $N=\sum_{i}\langle n\rangle\left(\epsilon_{i}\right)=2 N_{\text {max }}$

- Fermi energy

$$
\begin{aligned}
& \epsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2} N_{\max }^{2} \rightarrow \\
& \epsilon_{F}=\frac{\hbar^{2}}{2 m}(\pi \rho)^{2}, \quad \rho=\frac{N}{L}
\end{aligned}
$$

Fermi temperature $\mathrm{T}_{\mathrm{F}}=\frac{\hbar^{2}}{2 m k}(\pi \rho)^{2}$

Fermi Dirac distribution at $\mathrm{T}>0 \mathrm{~K}$

$$
n(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}+1}, \quad \mu\left(\epsilon_{F}, T\right)
$$

Energy states above the Fermi level are occupied by excited fermions

Particle number fluctuations

Probability for having n free fermions in a given energy state ϵ_{i} at fixed T and μ

$$
\begin{gathered}
P_{i}(n)=\frac{\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}}{1+\lambda e^{-\beta \epsilon_{i}}}=\left(\frac{n_{i}}{1-n_{i}}\right)^{n}=\left\{\begin{array}{ll}
1-n_{i}, & n=0 \\
n_{i}, & n=1
\end{array}, \quad n_{i}=\frac{1}{\lambda^{-1} e^{\beta \epsilon_{i}}+1}\right. \\
\langle n\rangle_{i}=P_{i}(1)=n_{i} \\
\left\langle n^{2}\right\rangle_{i}=\sum_{i=0}^{1} n^{2} P_{i}(n)=P_{i}(1)=n_{i}
\end{gathered}
$$

Mean square fluctuations

$$
\sigma_{n}^{2}=\left\langle n^{2}\right\rangle_{i}-\langle n\rangle_{i}^{2}=n_{i}-n_{i}^{2}
$$

Relative mean square fluctuations

$$
\frac{\sigma_{n}^{2}}{n_{i}^{2}}=\frac{1}{n_{i}}-1 \rightarrow 0 \text {, as } n_{i} \rightarrow 1
$$

Negative statistical correlation- statistical repelling force

