Pensum based on Lecture notes (F. Ravndal)
Module I: Equilibrium statistical ensemble (Ch. 1.1-1.8, 3.1-3.6)
Module II: Non-interacting particles (Ch. 2.1-2.5)
Module III: Weakly interacting particles (Ch. 4.1-4.3)
Module IV: Ideal quantum gases (5.1-5.7)
Module V: Magnetism (6.1-6.6)
Module VI: Stochastic and non-equilibrium processes (7.1-7.3; 8.1-8.2)
Final exam: 04. June 2019, 14:30 (4 hours)
Sal 3B Silurveien 2
Allowed material at the exam:

- Electronic calculator
- K. Rottman: Matematisk formelsamling
- \quad grim and Lian or Angell and Lian: Fysiske størrelser og enheter
- One A4 sheet of notes (both sides can be used)

Module I: Equilibrium statistical ensemble

- Thermodynamics laws
- Thermodynamic potentials and Legendre transforms
- Response functions and Maxwell's relations
- Liouville's theorem
- Microcanonical ensemble
- Canonical ensemble
- Grand-canonical ensemble

Thermodynamic potential and Legendre transforms

Thermodynamic Potentials	Thermodynamic (natural) Variables			
U (S,V,N)	$\mathrm{S}, \mathrm{V}, \mathrm{N}$	$	$	S, P, N
:---:				
H (S,P,N)				
F (T,V,N)				
G (T,P,N)				

```
dU =TdS - PdV + \mudN,
dH = TdS + VdP + \mudN,
dF = -SdT - PdV + \mudN,
dG = -SdT + VdP + \mudN,
```

$$
\begin{aligned}
& U(T, V, N)=S T-P V+\mu N \\
& H(S, P, N)=U(S, V, N)+P V \\
& F(T, V, N)=U(S, V, N)-T S \\
& G(T, P, N)=U(S, V, N)-T S+P V
\end{aligned}
$$

Extensive variables

 Intensive variables

$$
\begin{gathered}
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}, \quad C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P}, \quad \alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \\
K_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}, \quad K_{S}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{S}
\end{gathered}
$$

Liouville's theorem

- Ensemble density $\rho(p, q)$ is the number of systems that occupy a microstate per unit phase space volume
- $\rho(p, q) d \omega$ is the probability of finding the systems in a given microstate between (p, q) and ($p d p, q+d \rho$)

$$
\int \rho(p, q) d \omega=1
$$

- Liouville's theorem: Ensemble density is conserved

$$
\frac{\partial \rho}{\partial t}+\{\rho, H\}=0
$$

$$
d \omega \equiv \frac{d^{3 N} p d^{3 N} q}{(2 \pi \hbar)^{3 N}}
$$

- For equilibrium systems $\{\rho, H\}=0$, with a general solution

$$
\rho=\rho(H)
$$

Microcanonical ensemble (isolated systems)

- Equilibrium ensemble density

$$
\rho(p, q)=\frac{1}{\Sigma} \delta(H(p, q)-E),
$$

- Microcanonical density of states: phase space area over all microstate with a fixed energy E

$$
\Sigma(E, V, N)=\int d \omega \delta(H(p, q)-E)
$$

- Microcanonical phase space volume

$$
\Omega(E, V, N)=\int_{H(p, q) \leq U} d \omega=\int_{0}^{E} d E^{\prime} \Sigma\left(E^{\prime}\right)
$$

Thermodynamics of microcanonical ensemble

Boltzmann Entropy

$$
S(U, V, N)=k \ln \Omega(U, V, N)
$$

Temperature $\quad \frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)_{V, N}$

Pressure

$$
\frac{P}{T}=\left(\frac{\partial S}{\partial V}\right)_{U, N}
$$

Chemical potential

$$
\frac{\mu}{T}=-\left(\frac{\partial S}{\partial N}\right)_{U, V}
$$

Helmholtz free energy

$$
F=U-T S=U-k T \ln \Omega
$$

Ideal gas in the microcanonical ensemble

- Phase space volume

$$
\Omega(E)=\frac{\mathrm{V}^{N}}{(2 \pi \hbar)^{3 N}} \frac{\pi^{\frac{3 N}{2}}}{(3 N / 2)!}(2 m E)^{\frac{3 N}{2}}
$$

- Density of states $\Sigma(E)=\frac{\partial \Omega}{\partial E}$
- Entropy

$$
S(E, V, N)=k N\left\{\frac{5}{2}+\log \frac{V}{N}\left(\frac{m E}{3 \pi N \hbar^{2}}\right)^{\frac{3}{2}}\right\}
$$

- Temperature

$$
\frac{1}{T}=\frac{\partial S}{\partial E}=k N \frac{\partial}{\partial E} \log E^{\frac{3}{2}}=\frac{3 N k}{2} \frac{1}{E} \rightarrow E=\frac{3}{2} N k T
$$

- Pressure

$$
\frac{P}{T}=\frac{\partial S}{\partial V}=\frac{N k}{V} \rightarrow P V=N k T
$$

Canonical ensemble (systems in a thermal bath)

- Equilibrium ensemble density

$$
\rho(p, q)=\frac{1}{z} e^{-\beta H(p, q)}
$$

- Canonical partition function

$$
\mathrm{Z}(\mathrm{~T}, \mathrm{~V}, \mathrm{~N})=\int d \omega e^{-\beta H(p, q)}
$$

$$
\begin{gathered}
Z=\int d E e^{-\beta E} \Sigma(E) \\
Z=e^{-\beta F}
\end{gathered}
$$

- Probability of a macrostate with energy $\mathrm{E}, \quad P(E)=\frac{\Sigma(E)}{z} e^{-\beta E}$
- Average energy $\langle E\rangle=-\frac{\partial}{\partial \beta} \boldsymbol{\operatorname { l o g }} Z(T)$
- Fluctuations around the average energy $\left\langle\Delta E^{2}\right\rangle=\frac{\partial^{2}}{\partial \beta^{2}} \log Z(T)$

Ideal gas in the canonical ensemble

- $Z_{1}(T, V)=\frac{V}{h} \int d^{3} p e^{-\frac{\beta p^{2}}{2 m}}=\frac{V}{\Lambda^{3}}$, where $\Lambda=\frac{1}{\sqrt{2 m \pi k T}}$ is the thermal wavelength
- Gas of indistinguishable particles:

$$
Z(T, V, N)=\frac{Z_{1}^{N}}{N!}=\frac{V^{N}}{N!\Lambda^{3 N}}==e^{-\beta F(T, V, N)}
$$

- $S=-\left(\frac{\partial F}{\partial T}\right)_{V}=N k \log \frac{V}{N}$
- $P=-\left(\frac{\partial F}{\partial V}\right)_{T}=\frac{N k T}{V}$

Grand canonical ensemble (system in a thermal and particle reservoir)

- Equilibrium ensemble density

$$
\rho(p, q, n)=\frac{1}{\Xi} \frac{1}{n!} e^{\beta(\mu n-H(p, q))}
$$

- Grand-canonical partition function

$$
\begin{gathered}
\Xi(T, \mu)=\sum_{n=0}^{\infty} \frac{e^{\beta \mu n}}{n!} Z(T, n) \\
\Xi(T, \mu)=\sum_{n=0}^{\infty} e^{\beta \mu n} Z_{n}(T) \\
\Xi(T, \mu)=e^{-\beta \Omega}
\end{gathered}
$$

- Distribution of particle number in a macrostate $P(N)=\frac{Z(T, N)}{E} e^{\beta \mu N}$

Ideal gas in the grand-canonical ensemble

- $\Xi(T, V, \mu)=\sum_{N=0}^{\infty} e^{\beta \mu N} Z(T, V, N)$
$\cdot \Xi(T, V, \mu)=\sum_{N=0}^{\infty} \frac{1}{N!}\left(\frac{V}{\Lambda^{3}} e^{\beta \mu}\right)^{N}=e^{z V}$, where $\mathrm{z}=\frac{\mathrm{e}^{\beta \mu}}{\Lambda^{3}}$ is called fugacity
- $\Xi(T, V, \mu)=e^{Z V}=e^{-\beta \Omega}$
- Landau free energy $\Omega=-k T V \frac{e^{\beta \mu}}{\Lambda^{3}(T)}$
- $\langle\mathrm{N}\rangle=\frac{\partial \Omega}{\partial \mu}=V \frac{e^{\beta \mu}}{\Lambda^{3}(T)}=\mathrm{zV} \rightarrow \Omega=-\mathrm{kT}\langle N\rangle$
- $P=-\frac{\partial \Omega}{\partial V}=k T z \rightarrow P=\frac{\langle N\rangle k T}{V}$

Module II: Non-interacting particles

- Boltzmann statistics
- Bose-Einstein distribution
- Fermi-Dirac distribution

Maxwell-Boltzmann: free particles

- Equilibrium distribution of particles in an energy state

$$
n_{i}=\frac{N}{Z_{1}} e^{-\beta \epsilon_{i}}=e^{-\beta\left(\epsilon_{i}-\mu\right)}, Z_{1}=\sum_{i} e^{-\beta \epsilon_{i}}, N=Z_{1} e^{\beta \mu}
$$

- Probability of a specific microstate at fixed T and μ in the equilibrium

$$
\boldsymbol{P}(\boldsymbol{s})=\frac{1}{\Xi(\boldsymbol{T}, \boldsymbol{\mu})} \frac{1}{N_{s}!} \boldsymbol{e}^{-\boldsymbol{\beta}\left(E_{s}-\boldsymbol{\mu} N_{s}\right)}, \quad N_{s}=\sum_{i} n_{i}, \quad E_{S}=\sum_{i} \epsilon_{i} n_{i}
$$

- Grand-canonical partition function (sum over particle numbers and sum over all the energy states for each individual particle)

$$
\begin{gathered}
\Xi(T, \mu)=\sum_{N_{s}} \frac{1}{N_{s}!} \sum_{E_{s}} e^{-\beta\left(E_{s}-\mu N_{s}\right)}=\sum_{N_{s}} \frac{1}{N_{s}!} \prod_{k=1}^{N_{s}} \sum_{\epsilon_{k}} e^{-\beta\left(\epsilon_{k}-\mu\right)} \\
\Xi(T, \mu)=\sum_{N_{s}} \frac{1}{N_{s}!}\left(\lambda \sum_{i} e^{-\beta \epsilon_{i}}\right)^{N_{s}}=e^{\lambda Z_{1}}, \quad \lambda=e^{\beta \mu}, \quad Z_{1}=\sum_{i} e^{-\beta \epsilon_{i}}
\end{gathered}
$$

Maxwell-Boltzmann: free particles

- Probability of having N_{s} particles in a macroscopic state at T and μ

$$
\begin{gathered}
P\left(N_{s}\right)=\frac{1}{\Xi(T, \mu)} \frac{1}{N_{s}!} \sum_{E_{s}} e^{-\beta\left(E_{s}-\mu N_{s}\right)}=\frac{1}{N_{s}!}\left(Z_{1} \lambda\right)^{N_{s}} e^{-Z_{1} \lambda} \\
P\left(N_{s}, N\right)=\frac{1}{N_{s}!} N^{N_{s}} e^{-N}, \quad\left\langle N_{s}\right\rangle=N(T, \mu)=Z_{1}(T) \lambda(T, \mu)
\end{gathered}
$$

Total number of particles in a macrostate is a fluctuating (random)quantity drawn from a Poisson distribution with $\left\langle N_{S}\right\rangle=N$ as the average number

- $\left\langle\Delta N_{s}^{2}\right\rangle=\left\langle N_{s}^{2}\right\rangle-\left\langle N_{s}\right\rangle^{2}=\left\langle N_{s}\right\rangle$
- Relative number fluctuations $\frac{\left\langle\Delta N_{s}^{2}\right\rangle}{\left\langle N_{s}\right\rangle^{2}}=\frac{1}{N}=\frac{1}{Z_{1} \lambda} \ll 1$

Maxwell-Boltzmann: free particles

- Probability for an occupation number n in ϵ_{i} energy state

$$
\begin{aligned}
& P_{i}(n)=\frac{\frac{1}{n!}\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}}{\left(\sum_{n} \frac{1}{n!}\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}\right)}=\frac{1}{n!} \frac{\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}}{\exp \left(\lambda e^{-\beta \epsilon_{i}}\right)} \\
& P_{i}\left(n, n_{i}\right)=\frac{1}{n!} n_{i}^{n} e^{-n_{i}}, \quad n_{i}=\langle n\rangle_{i}=\lambda e^{-\beta \epsilon_{i}}
\end{aligned}
$$

Occupation number of an energy state is also a random number following Poisson distribution with $n_{i}=\lambda e^{-\beta \epsilon_{i}}$

- $\left\langle\Delta n^{2}\right\rangle_{i}=\left\langle n^{2}\right\rangle_{i}-\langle n\rangle_{i}^{2}=n_{i}$
- Relative number fluctuations $\frac{\left\langle\Delta n^{2}\right\rangle_{i}}{n_{i}^{2}}=\frac{1}{n_{i}}=\frac{Z_{1} e^{\beta \epsilon_{i}}}{N} \ll 1$

Bose-Einstein statistics:

- Equilibrium (average) occupation number for an energy state

$$
\left\langle n_{i}\right\rangle=\frac{1}{e^{\beta\left(\epsilon_{i}-\mu\right)}-1}=\frac{1}{e^{\beta \epsilon_{i}} \lambda^{-1}-1}
$$

- Probability of a specific microstate at fixed T and μ in the equilibrium

$$
\boldsymbol{P}(\boldsymbol{s})=\frac{1}{\Xi(\boldsymbol{T}, \boldsymbol{\mu})} \boldsymbol{e}^{-\boldsymbol{\beta}\left(E_{s}-\boldsymbol{\mu} N_{s}\right)}, \quad N_{s}=\sum_{i} n_{i}, \quad E_{s}=\sum_{i} \epsilon_{i} n_{i}
$$

- Grand-canonical partition function

$$
\Xi^{(B E)}(T, \mu)=\prod_{i}\left(\sum_{n_{i}=0}^{\infty}\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n_{i}}\right)=\prod_{i}\left(\frac{1}{1-\lambda e^{-\beta \epsilon_{i}}}\right)
$$

Bose-Einstein statistics:

- Probability for having n bosons in a given energy state

$$
P_{i}^{(B E)}(n)=\left(1-\lambda e^{-\beta \epsilon_{i}}\right)\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}=\frac{1}{\left\langle n_{i}\right\rangle+1}\left(\frac{\left\langle n_{i}\right\rangle}{\left\langle n_{i}\right\rangle+1}\right)^{n}
$$

geometric distribution: probability that a particle occupies an energy state is independent of the number of particles already in that states --- tendency of «bunching» together

Relative number fluctuations $\frac{\left\langle\Delta n^{2}\right\rangle_{i}}{n_{i}^{2}}=\frac{1}{n_{i}}+1$

Increased number fluctuations relative to be MB statistics

$$
\begin{aligned}
& \odot \\
& \text { © }{ }^{\circ} \text {) } \odot \\
& \text { © }) \\
& \left\langle n^{2}\right\rangle_{i}=\sum_{n=0}^{\infty} n^{2} \frac{1}{\left\langle n_{i}\right\rangle+1}\left(\frac{\left\langle n_{i}\right\rangle}{\left\langle n_{i}\right\rangle+1}\right)^{n} \\
& \left\langle n^{2}\right\rangle_{i}=\frac{1}{\left\langle n_{i}\right\rangle+1}\left(x \frac{d}{d x}\right)^{2} \sum_{n=0}^{\infty} x^{n} \\
& \left\langle n^{2}\right\rangle_{i}=\frac{1}{\left\langle n_{i}\right\rangle+1}\left(x \frac{d}{d x}\right)^{2}\left(\frac{1}{1-x}\right), \quad x=\frac{\left\langle n_{i}\right\rangle}{\left\langle n_{i}\right\rangle+1} \\
& \left\langle n^{2}\right\rangle_{i}=\left\langle n_{i}\right\rangle+2\left\langle n_{i}\right\rangle^{2}
\end{aligned}
$$

Fermi-Dirac statistics

Equilibrium occupation number for an energy state

$$
n_{i}=\frac{1}{e^{\beta\left(\epsilon_{i}-\mu\right)}+1}=\frac{1}{e^{\beta \epsilon_{i} \lambda^{-1}+1}}
$$

- Probability of a specific microstate at fixed T and μ in the equilibrium

$$
\boldsymbol{P}(\boldsymbol{s})=\frac{\mathbf{1}}{\Xi(\boldsymbol{T}, \boldsymbol{\mu})} \boldsymbol{e}^{-\boldsymbol{\beta}\left(E_{\boldsymbol{s}}-\boldsymbol{\mu} N_{s}\right)}, \quad N_{s}=\sum_{i} n_{i}, \quad E_{S}=\sum_{i} \epsilon_{i} n_{i}
$$

- Grand-canonical partition function

$$
\Xi(T, \mu)=\prod_{i}\left(\sum_{n_{i}} e^{-\beta n_{i}\left(\epsilon_{1}-\mu\right)}\right)=\prod_{i}\left(1+e^{-\beta\left(\epsilon_{i}-\mu\right)}\right)
$$

Free fermions: Fermi-Dirac statistics

- Probability for having \boldsymbol{n} free fermions in a given energy state $\boldsymbol{\epsilon}_{\boldsymbol{i}}$ at fixed T and μ is the same as the average occupation number n_{i}

$$
P_{i}^{(F D)}(n)=\frac{\left(\lambda e^{-\beta \epsilon_{i}}\right)^{n}}{1+\lambda e^{-\beta \epsilon_{i}}}= \begin{cases}1-n_{i}, & n=0 \\ n_{i}, & n=1\end{cases}
$$

- $\left\langle n^{2}\right\rangle_{i}=\sum_{i=0}^{1} n^{2} P_{i}(n)=P_{i}(1)=n_{i}$
- Relative mean square fluctuations: as the occupation probability increases, fluctuations are suppressed

$$
\frac{\left\langle\Delta n^{2}\right\rangle_{i}}{n_{i}^{2}}=\frac{1}{n_{i}}-1 \rightarrow 0, \text { as } n_{i} \rightarrow 1
$$

- Negative statistical correlation- statistical repelling force

Classical limit: $\epsilon_{i} \ll k T, \mu(T) \ll 0$

(high-T limit)

- Fermi Dirac/Bose-Einstein distribution:

$$
n_{i}=\frac{1}{e^{\beta\left(\epsilon_{i}-\mu\right)} \pm 1}=e^{\beta \mu} \frac{e^{-\beta \epsilon_{i}}}{1 \pm e^{-\beta \epsilon_{i}} e^{\beta \mu}} \approx e^{\beta \mu} e^{-\beta \epsilon_{i}}
$$

- Maxwell Boltzmann distribution:

$$
n_{i}^{M B}=\frac{N}{Z_{1}} e^{-\beta \epsilon_{i}}=e^{\beta \mu} e^{-\beta \epsilon_{i}}
$$

- Classical ideal gas limit: $\mu=-k T \ln \frac{V}{N \Lambda^{3}(T)} \ll 0 \rightarrow$

$$
T \gg T^{*}=\left(\frac{h^{2}}{2 \pi m k}\right) \rho^{2}, \quad \rho=\frac{N}{V}
$$

Module III: Weakly interacting particles: classical fluids

- Virial theorem
- Mean-field theory and van der Waals fluids
- Phase transitions in the van der Waals systems

Classical gases and liquids

- Statistical mechanics of weakly-interacting classical indistinguishable particles
- Translational and rotational symmetric Hamiltonian H_{N}

$$
H_{N}(p, q)=\sum_{j=1}^{3 N} \frac{p_{j}^{2}}{2 m}+U\left(q_{1}, q_{2}, \cdots q_{3 N}\right)
$$

$H_{N}=\sum_{i=1}^{N} \frac{\left|\vec{p}_{i}\right|^{2}}{2 m}+\frac{1}{2} \sum_{j \neq i} u\left(r_{i j}\right), \quad r_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|, \quad \vec{r}=(x, y, z), \quad \vec{p}=\left(p_{x}, p_{y}, p_{z}\right)$

- Homogeneous and isotropic matter: gases and liquids

- $Z_{N}(T, N)=\frac{1}{N!} \int d \omega e^{-\beta H_{N}(p, q)}=\frac{1}{N!} \frac{Q_{N}}{\Lambda^{3 N}}$
- $Q_{N}=\int d^{N} \vec{r} e^{-\beta U\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)}$
configurational partition function: contains all the information about the particle positions

Correlation functions

Mean density of particles is uniform for a translational and isotropic system

$$
\langle n(\vec{r})\rangle=\left\langle\sum_{i=1}^{N} \delta\left(\vec{r}-\vec{r}_{i}\right)\right\rangle=\rho=\frac{N}{V}
$$

Density correlation of pairs of particles separated by $\vec{r}-\vec{r}^{\prime}$

$$
\begin{gathered}
\left\langle n(\vec{r}) n\left(\vec{r}^{\prime}\right)\right\rangle=\left|\sum_{i=1}^{N} \sum_{j=1}^{N} \delta\left(\vec{r}-\vec{r}_{i}\right) \delta\left(\vec{r}^{\prime}-\vec{r}_{j}\right)\right| \equiv G\left(\vec{r}-\vec{r}^{\prime}\right) \\
G\left(\vec{r}-\vec{r}^{\prime}\right)=\rho^{2} g\left(\vec{r}-\vec{r}^{\prime}\right)+\rho \delta\left(\vec{r}-\vec{r}^{\prime}\right), \\
\rho^{2} g\left(\vec{r}-\vec{r}^{\prime}\right) \equiv \rho^{2} g\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right)=\rho^{2} g(r)
\end{gathered}
$$

Average properties

Average energy

$$
\langle E\rangle=\frac{3 N}{2} k T+\frac{\rho N}{2} \int d \vec{r} u(r) g(r)
$$

Particle number fluctuations

$$
\left\langle\Delta N^{2}\right\rangle=\langle N\rangle+\langle N\rangle \rho \int d \vec{r}[g(r)-1]
$$

Virial theorem

$$
\begin{gathered}
2\langle K\rangle=-\left\langle\sum_{k} \vec{r}_{k} \cdot \vec{F}_{k}\right\rangle \rightarrow 3 N k T=\frac{N \rho}{2} \int d \vec{r} r^{2} u^{\prime}(r) g(r)+3 P V \\
P=\rho\left[k T-\frac{\rho}{6} \int d \vec{r} r u^{\prime}(r) g(r)\right]
\end{gathered}
$$

Mean-field approximation: van der Waals system

In the mean field approximation, we assume that all particles experience the same effective potential field

$$
U\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)=\sum_{i} \sum_{i \neq j} u\left(r_{i j}\right)=\sum_{i=1}^{N} \bar{u}=N \bar{u}
$$

Self-consistent equation

$$
\bar{u}=\frac{\left\langle U_{N}\right\rangle}{N}=\frac{\rho}{2} \int d \vec{r} u(r) g(r)=-\frac{N a}{V}, \quad a>0
$$

Canonical partition function

$$
Z_{N}=\frac{1}{N!} \frac{Q_{N}}{\Lambda^{3 N}}, \quad Q_{N}=(V-N b)^{N} e^{-N \beta \bar{u}}
$$

Helmholtz free energy $\quad F_{N}=-k T \ln \left(Z_{N}\right)$

$$
F_{N}=-N k T\left[\ln \left(\frac{V}{N \Lambda^{3}(T)}\right)+1\right]-N k T \ln \left(1-\frac{N b}{V}\right)-\frac{N^{2} a}{V}
$$

Equation of state

$$
P=k T\left(\frac{N}{V-N b}-\frac{a}{k T} \frac{N^{2}}{V^{2}}\right)
$$

Liquid-gas phase transitions

- Van der Waals equation of state for fluids

$$
P=\frac{N k T}{V-N b}-\frac{a N^{2}}{V^{2}}
$$

- Abrupt phase transition is represented by the phase coexistance boundary $P_{\lg } \quad\left(T_{\lg }\right)$ in the P-T phase diagram
- First order derivaties of the thermodynamic potential are discontinuous: entropy and volume
- Clausius Clapeyron relation: How the pressure depends on the temperature on the vaporisation/condensation phase boundary
- Phase transition from liquid to vapor at a constant Gibbs free energy $G(P, T, N)$
- There is a unique critical point ($\mathbf{T}_{\mathbf{c}}, \boldsymbol{P}_{\boldsymbol{c}}, \boldsymbol{V}_{\boldsymbol{c}}$) at which the phase transition turns critical
- First order derivaties of the thermodynamic potential are continuous, but the second order derivaties, like heat capacity, susceptibility, are power-law divergent neat the critical point
- Critical phase transitions are robust to microscopic details and exhibit universal scaling properties, e.g. critical scaling exponents

Abrupt phase transition

(a)

(b) $S=-(\partial F / \partial T)_{P}$

(c)

(d) $V=(\partial G / \partial P)_{T}$

Critical phase transition

(b) $S=-(\partial F / \partial T)_{P}$

(c)

(d) $V=(\partial G / \partial P)_{T}$

Module IV: Ideal quantum gases

- Blackbody radiation: Photon gas
- Debye model: phonon gas
- Ideal Bose gas: Bose Einstein condensation
- Ideal Fermi gas: Degenerate Fermi gases

Ideal quantum gas

Consider a system of $N=\sum_{j} n_{j}$ fre. quantum particles with number n_{j} of particles in each energy state ϵ_{j}
Fermions: $n_{j}=0,1$
Bosons: $\quad n_{j}=0,1,2, \cdots$

Grand-canonical partition function:

Unconditioned sum weighted by the Gibbs factor over all microstates with $\left\{n_{j}\right\}$ partition of particles between the energy levels $\left\{\epsilon_{j}\right\}$,

$$
\Xi=\sum_{\left\{n_{j}\right\}} e^{-\beta \sum_{j}\left(\epsilon_{j}-\mu\right) n_{j}}=\prod_{j} \sum_{n_{j}} e^{-\beta\left(\epsilon_{j}-\mu\right) n_{j}}
$$

Grand-canonical partition function:

$$
\Xi=\Pi_{j}\left(\frac{1}{1 \pm e^{-\beta\left(\epsilon_{j}-\mu\right)}}\right)^{\mp 1},\left\{\begin{array}{c}
\text { top sign: fermions } \\
\text { bottom sign: bosons }
\end{array}\right.
$$

Landau free energy: $\Omega(\mathrm{T}, \mathrm{V}, \mu)=-P V=-k T \log \Xi$

$$
\Omega=\mp k T \sum_{j} \log \left[1 \pm e^{-\beta\left(\epsilon_{j}-\mu\right)}\right]
$$

Thermodynamics of ideal quantum gases

Pressure $P(T, \mu)$

$$
\begin{equation*}
P V= \pm k T \int d \epsilon D(\epsilon) \log \left(1 \pm e^{-\beta(\epsilon-\mu)}\right) \tag{1}
\end{equation*}
$$

Equation for the average number of particles provides the relationship between the density ρ and chemical potential μ :

$$
\begin{equation*}
\langle N\rangle(T, V, \mu)=\int d \epsilon D(\epsilon) \frac{1}{e^{\beta(\epsilon-\mu)} \pm 1}=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon} \tag{2}
\end{equation*}
$$

Average energy:

$$
\begin{equation*}
\langle E\rangle(T, V, \mu)=\int d \epsilon D(\epsilon) \frac{\epsilon}{e^{\beta(\epsilon-\mu)} \pm 1}=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon} \epsilon \tag{3}
\end{equation*}
$$

For systems with non-zero μ, we use Eq. (2) as the equation that determines $\mu(\rho)$ and eliminate the μ dependence in Eqs. (1) and (3), so that we can find the equation of state $P(T, \rho)$ and the energy $E(T, \rho)$

Photon gas: uncountable photons $\mu \equiv 0$

Grand-canonical partition function:

$$
\Xi=\prod_{\vec{n}} \frac{1}{1-e^{-\beta \hbar c k}}
$$

Landau potential:

$$
\Omega(\mathrm{T}, \mathrm{~V})=-P V=k T \sum_{\vec{n}} \ln \left(1-e^{-\beta \hbar c k}\right)=k T \int d n D(n) \ln \left(1-e^{-\frac{\beta h c}{L} n}\right)
$$

Density of states
$D(n) d n=2 \times 4 \pi n^{2} d n$ number of modes with quantum number between n and $\mathrm{n}+\mathrm{dn}$ $D(n) d n=D_{k}(k) d k=D_{\omega}(\omega) d \omega=D_{\epsilon}(\epsilon) \epsilon$

- $D_{k}(k)=\frac{V}{\pi^{2}} k^{2}, \quad D_{\omega}(\omega)=\frac{V}{\pi^{2} c^{3}} \omega^{2}, \quad D_{\epsilon}(\epsilon)=\frac{V}{\pi^{2} \hbar^{3} c^{3}} \epsilon^{2}$

Pressure: $\quad P V=-k T \int d \epsilon D(\epsilon) \log \left(1-e^{-\beta \epsilon}\right)$
Average number of particles: $\quad\langle N\rangle=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon}=\int d \epsilon D(\epsilon) \frac{1}{e^{\beta \epsilon-1}}$
Average energy:

$$
\langle E\rangle=\int d \epsilon D(\epsilon)\langle n\rangle_{\epsilon} \epsilon=\int d \epsilon D(\epsilon) \frac{\epsilon}{e^{\beta \epsilon-1}}
$$

Planck distribution:

Spectral energy distribution of a photon gas

Average energy density of a photon gas:

$$
\begin{gathered}
\frac{\langle E\rangle(T, V)}{V}=\frac{1}{V} \int d \omega \frac{D_{\omega}(\omega) \hbar \omega}{e^{\beta \hbar \omega}-1} \\
=\frac{\hbar}{\pi^{2} c^{3}} \int_{0}^{\infty} d \omega \frac{\omega^{3}}{e^{\beta \hbar \omega}-1}=\frac{\pi^{2} k^{4}}{15 c^{3} \hbar^{3}} T^{4}
\end{gathered}
$$

Energy per unit volume at a given frequency ω

$$
\begin{aligned}
\frac{\langle E\rangle}{V} & =\int d \omega \varepsilon(\omega, T) \\
\varepsilon(\omega, T) & =\frac{\hbar}{\pi^{2} c^{3}} \frac{\omega^{3}}{e^{\beta \hbar \omega}-1}
\end{aligned}
$$

Phonon gas: Debye model

Atoms vibrate with different frequencies and a linear dispersion
$\omega=k v$, where v is the sound wave in the solid

- Density of elastic modes is analogous to the density of states for photons (in the long-wavelength approximation, continuum elastic medium)

$$
D_{\omega}(\omega)=3 \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{2}} \frac{d k}{d \omega}=3 \frac{V}{2 \pi^{2}} \frac{\omega^{2}}{v^{3}}, \quad \text { for } 0 \leq \omega \leq \omega_{D}
$$

- Total number of modes: 3 N normal modes (in 3D) for N atoms

$$
3 N=\int_{0}^{\omega_{D}} d \omega D(\omega)=3 \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2}
$$

Debye frequency $\omega_{D}=v\left(\frac{6 \pi^{2} N}{V}\right)^{\frac{1}{3}} \rightarrow \omega_{D}=\frac{2 \pi v}{\lambda_{\min }}=v\left(6 \pi^{2} \rho\right)^{\frac{1}{3}}, \quad \rho=\frac{N}{V}$

Debye model: heat capacity of crystals

- Total average energy of phonons

$$
U(T, V)=\int_{0}^{\omega_{D}} d \omega D(\omega) \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}=3 k \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2} \frac{\hbar \omega}{e^{\beta \hbar \omega}-1}
$$

- Heat capacity

$$
\begin{gathered}
C_{V}(T)=\left(\frac{\partial U}{\partial T}\right)_{V}=3 k \frac{V}{2 \pi^{2} v^{3}} \int_{0}^{\omega_{D}} d \omega \omega^{2}\left(\frac{\hbar \omega}{k T}\right)^{2} \frac{e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}} \\
C_{V}(T)=9 N k\left(\frac{T}{T D}\right)^{3} F\left(\frac{T_{D}}{T}\right), \quad F(y)=\int_{0}^{y} d x \frac{x^{4} e^{x}}{\left(e^{x}-1\right)^{2}} \\
C_{V}(\boldsymbol{T}) \approx \mathbf{3 N k}, \quad \boldsymbol{T} \gg \boldsymbol{T}_{\boldsymbol{D}} \\
C_{V}(T) \approx \frac{12}{5} N k \pi^{4}\left(\frac{T}{T_{D}}\right)^{3}, \quad \boldsymbol{T} \ll \boldsymbol{T}_{\boldsymbol{D}}
\end{gathered}
$$

Ideal Bose gas: Density of states in 3D

- Energy levels for a particle in a box with periodic boundary conditions:

$$
\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}|\vec{n}|^{2}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2} n^{2}, \quad \vec{n}=\left(n_{x}, n_{y}, n_{z}\right), \quad n_{x, y, z} \text { integers }
$$

- Quantum state of the particle is described by its wavefunction $\psi_{1}=e^{\frac{2 \pi i}{L} \vec{n} \cdot \vec{r}}$, which is determined by

Number of available states of modes between n and $n+d n$ in $3 D$

$$
\begin{gathered}
D(n) d n=4 \pi n^{2} d n \\
D_{\epsilon}(\epsilon) d \epsilon=D(n) d n \rightarrow D_{\epsilon}(\epsilon)=\frac{V}{\sqrt{2} \pi^{2}} \frac{m^{3 / 2}}{\hbar^{3}} \epsilon^{\frac{1}{2}}
\end{gathered}
$$

Average number of particles: $\quad\langle N\rangle=\int d \epsilon D_{\epsilon}(\epsilon) \frac{1}{e^{\beta(\epsilon-\mu)}-1}$

Average energy: $\quad U=\int d \epsilon D_{\epsilon}(\epsilon) \frac{\epsilon}{e^{\beta(\epsilon-\mu)}-1}$
Pressure: $\quad P V=-k T \int d \epsilon D_{\epsilon}(\epsilon) \ln \left[1-e^{-\beta(\epsilon-\mu)}\right]$

Ideal Bose gas

At a given temperature T, density ρ and chemical potential μ are related by the following equation

$$
\begin{aligned}
\rho(T, \mu) & =\frac{1}{V} \frac{1}{\lambda^{-1}-1}+\Lambda^{-3}(T) \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} d x \frac{x^{\frac{1}{2}}}{e^{x}-1} \\
\rho(T, \mu) & =\rho_{0}(T, \mu)+\rho_{e x}(T, \mu), \quad \lambda=e^{\beta \mu}
\end{aligned}
$$

Critical temperature for Bose Einstein condensation:
Determined by the density of the bose gas when $\mu=\mathbf{0}: \quad \boldsymbol{T}_{\boldsymbol{c}}(\boldsymbol{\rho})=\frac{\boldsymbol{h}^{2}}{2 \pi m k}\left(\frac{\boldsymbol{\rho}}{\zeta\left(\frac{3}{2}\right)}\right)^{\frac{2}{3}}$

- $\boldsymbol{T} \leq \boldsymbol{T}_{c}$: Density is a mixture of condensed (dominant) and normal gas

$$
\rho=\rho_{0}(T)+\rho_{e x}(T)=\Lambda^{-3}\left(T_{c}\right) \zeta(3 / 2)
$$

- $T>T_{c}$: Density is dominated by that of the normal gas

$$
\rho(T, \mu)=\rho_{e x}(T, \mu)=\Lambda^{-3}(T) g_{\frac{3}{2}}(\lambda)
$$

This equation determines the chemical potential $\mu(T, \rho)$

Bose-Einstein condensate $T<T_{c} \quad(\lambda=1, \mu=0)$

$$
\rho=\rho_{0}(T)+\rho_{e x}(T)=\Lambda^{-3}\left(T_{c}\right) \zeta(3 / 2)
$$

A macroscopic fraction of particles condense into the ground state with the zero momentum

- Chemical potential $\mu=\mathbf{0}$ remains zero for all temperatures below $\boldsymbol{T}_{\boldsymbol{c}}$
- Excess density depends only on temperature and actually decreases with decreasing temperature

- Ground state density becomes non-zero and increases with decreasing temperature

$$
\frac{\rho_{0}}{\rho}=1-\frac{\rho_{e x}(T)}{\rho}=1-\frac{\Lambda^{3}\left(T_{c}\right)}{\Lambda^{3}(T)}=1-\left(\frac{T}{T_{c}}\right)^{3 / 2}
$$

Pressure becomes independent of density

$$
\frac{P}{k T}=\frac{1}{\Lambda^{3}(T)} g_{5 / 2}(1) \rightarrow P(T) \sim T^{\frac{5}{2}}
$$

Average kinetic energy $U=\frac{3}{2} N k T \rho^{-1} \Lambda^{-3}(T) g_{5 / 2}(\lambda)$

$$
U=\frac{3}{2} N k T\left(\frac{T}{T_{c}}\right)^{\frac{3}{2}} \frac{g_{\frac{5}{2}}(\lambda)}{\zeta\left(\frac{3}{2}\right)}, \quad T<T_{c}
$$

Ideal Fermi gases: Density of states in 3D

- $\Psi_{1}(\boldsymbol{r})=e^{\frac{2 \pi i}{L} \boldsymbol{n} \cdot \boldsymbol{r}}$ 1-particle wave function
- Each fermion (i.e. electron) has a spin moment $= \pm \frac{1}{2}$
- Energy levels a fermion in a box $V=L^{3}$ with periodic boundary conditions: $\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2} n^{2}$,

Number of available states between a mode with n between n and $n+d n: D(n) d n=2 \times 4 \pi n^{2} d n$

$$
\sum_{n}:=2 \times \int d n 4 \pi n^{2}=\int d n D(n)
$$

Density of states corresponding to energy ϵ :

$$
D(\epsilon)=D(n) \frac{d n}{d \epsilon} \rightarrow D(\epsilon)=2 \frac{V}{\sqrt{2} \pi^{2}} \frac{m^{3 / 2}}{\hbar^{3}} \epsilon^{\frac{1}{2}}
$$

The difference with respect to the density of states of bosons is the spin degeneracy of the energy levels (hence the extra factor of 2).

Fermi distribution at $\mathrm{T}=0 \mathrm{~K}$

$$
f(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)+1}} \rightarrow_{T \rightarrow 0}\left\{\begin{array}{l}
1, \epsilon<\mu \\
0, \epsilon>\mu
\end{array}\right.
$$

$\epsilon_{F} \equiv \mu$ Fermi energy level below which all states are occupied
Determined by the gas density $\epsilon_{F}(\rho)=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \rho\right)^{\frac{2}{3}}$

$$
\rho\left(\epsilon_{F}\right)=\frac{1}{3 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon_{F}^{\frac{3}{2}}
$$

\square

Energy

$$
\frac{\langle E\rangle_{0}}{V}=\frac{\sqrt{2}}{\pi^{2}} \frac{m^{3 / 2}}{\hbar^{3}} \int_{0}^{\epsilon_{F}} d \epsilon \epsilon^{\frac{3}{2}}=\frac{1}{5 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon_{F}^{\frac{5}{2}}
$$

Exclusion pressure

$$
P_{0}=\frac{\hbar^{2}}{15 \pi^{2} m^{2}}\left(3 \pi^{2} \rho\right)^{\frac{5}{3}}
$$

Denenerate ideal Fermi gas $T<T_{F}$

The Fermi temperature is most often much larges than the gas temperature
Therefore, even though the fermi gas is at finite temperature, it behaves as if it was a near zero temperature when $T \ll T_{F}$

Sommerfeld expansion: $\frac{k T}{\mu} \ll 1$:

$$
\begin{gathered}
\rho=\frac{1}{3 \pi^{2}} \frac{(2 m)^{\frac{3}{2}}}{\hbar^{3}} \mu^{3 / 2}\left(1+\frac{\pi^{2}}{8}\left(\frac{k T}{\mu}\right)^{2}+\cdots\right), \quad \rho=\frac{1}{3 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon_{F}^{\frac{3}{2}} \\
\mu=\epsilon_{F}\left(1-\frac{\pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right) \\
\frac{\langle E\rangle}{V}=\frac{1}{5 \pi^{2}} \frac{(2 m)^{\frac{3}{2}}}{\hbar^{3}} \epsilon_{F}^{5 / 2}\left(1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right) \\
\mathrm{C}_{\mathrm{V}}=\frac{1}{2}\langle N\rangle \pi^{2} k \frac{T}{T_{F}}
\end{gathered}
$$

Equation of state for quantum gases: high T

$$
\begin{aligned}
& \mathrm{P}_{\text {fermions }} \approx k T \rho\left(1+2^{-\frac{7}{2}} \Lambda^{3} \rho\right) \\
& \mathrm{P}_{\text {bosons }} \approx k T \rho\left(1-2^{-\frac{5}{2}} \Lambda^{3} \rho\right)
\end{aligned}
$$

Nonzero second virial coeff. $B_{2}(T) \neq 0$
Bosons: $B_{2}(T)<0$ statistical attraction

Fermions: $B_{2}(T)>0$ statistical repulsion

Module V: Magnetism

- Paramagnetism
- Ferromagnetism and Ising model
- Weiss mean field theory
- Ising phase transition

Ising model for ferromagnets

A system of N spins $s_{i}= \pm 1$ on a periodic lattice and in a uniform magnetic field B. Spins interact with their nearest neighbor on the lattice

$$
H_{N}=-J \sum_{i} \sum_{\substack{j=\\ \text { n.n.of } i}} s_{i} s_{j}-\sum_{i} s_{i} B, \quad\left(\mu_{B}=1\right)
$$

$>\mathrm{J}>0$ is the coupling constant, such that the energy is minimized when neighboring spins point in the same direction
>Summation over the nearest neighbors (n.n.) i atoms that are coupled to the ith atom on a crystal lattice (short hand notation used sometime $\equiv\langle\mathrm{ij}\rangle$)
> The form of the spin-spin interaction as $-J s_{i} s_{j}$ originates the Coulomb interactions between the electrons (spin carriers); magnetic dipole interactions are too weak.

Ising model in 1D

$$
H_{N}=-J \sum_{i=0}^{N-1} s_{i} s_{i+1}-\sum_{i} s_{i} B, s_{i}= \pm 1
$$

Periodic boundary conditions $s_{N} \equiv s_{0}$

Partition function for N spins: Transfer matrix

$$
\begin{aligned}
Z_{N}=\sum_{\left\{s_{i}\right\}} e^{-\beta H_{N}\left(\left\{s_{i}\right\}\right)} & =\operatorname{Tr}\left(T^{N}\right)=\lambda_{1}^{N}+\lambda_{2}^{N} \approx \lambda_{1}^{N}, \quad \text { for } N \gg 1 \\
T & =\left(\begin{array}{cc}
e^{\beta(J+B)} & e^{-\beta J} \\
e^{-\beta J} & e^{\beta(J-B)}
\end{array}\right)
\end{aligned}
$$

Gibbs free energy $G_{N}=-k T \ln \left(Z_{N}\right)$

Mean magnetization $M(T, B)=-\left(\frac{\partial G_{N}(T, B)}{\partial B}\right)_{T}$

Any themal fluctuation destroys the net magnetization in the limit of zero applied field

1D Ising model: No phase transition

At any nonzero temperature, it is energetically favorable to create defects (kinks) due to thermal fluctuations

Change in energy for flipping a spin (kink in the ordered state)

$$
U_{0}=-N J(\text { order }), \quad U_{1}=-(N-2) J+2 J(\text { with a kink }) \rightarrow \Delta U=4 J
$$

Change in entropy for flipping a spin anywhere in the 1D chain (N sites)

$$
\Delta S=k \log N
$$

The spin flipping due to thermal fluctuations is favored when it lowers the Helmholtz free energy

$$
\Delta F=\Delta U-T \Delta S<0 \rightarrow J-k T \log N<0
$$

This is always satisfied at any $\mathrm{T}>0$, hence the spin order is spontaneously broken by kinks due thermal fluctuations.

Ising model in d>1: Critical phase transitions

$T<T_{C}$

$T \approx T_{C}$

$T>T_{C}$

Critical phase transition occurs at a unique point in the $B-T$ diagram: $\left(B_{c}, T_{c}\right)$
Q: How do we theoretically predict this critical point and the behavior near it?
A: Mean-field approximation, Landau field theory/s rephermalization group techniques

Weiss mean-field theory

$$
H_{N}=-J \sum_{\langle i j\rangle} s_{i} s_{j}-\sum_{i} s_{i} B=-\sum_{i} s_{i}\left(J \sum_{j=n . n .(i)}^{z=2 d} s_{j}+B\right)
$$

- Replace the neighboring spin s_{j} by the mean + fluctuations

$$
s_{j}=m+\left(s_{j}-m\right)=m+\delta s_{j}
$$

- Mean-field approxitimation: Ignore the effect of fluctations
$H=-\sum_{i} s_{i} B_{e f f}$, where $B_{e f f}=B+z J m$
Self-consistent equation $\boldsymbol{m} \equiv\langle\boldsymbol{s}\rangle$

$$
m=\tanh \left[\frac{T_{c}}{T} m+\underset{\text { Fys }}{\boldsymbol{T}}\right]_{00,2019}
$$

Self-consistent equation

- Limit of $B=0$

$$
m=\tanh \left[\frac{z J m}{k T}\right]
$$

- solved graphically by looking at the intersection points between the diagonal curve and the $\tanh (x)$

Critical temperature: $T_{c}=\frac{z J}{k}$

$$
m=\tanh \left[\frac{T_{c}}{T} m\right]
$$

- For $T>T_{c}$, there is only one root at $m=0$
- For $T<T_{c}$, there are three roots at $m=0, \pm m_{0}(T)$
- The non-zero solutions depend on the temperature below T_{c}

Critical exponents for the magnetic phase transition

Mean-field universality class

Order parameter
Critical isotherm
Susceptibility
Heat capacity

$$
\begin{aligned}
& M(T, B=0) \sim\left(T_{c}-T\right)^{\beta}, \quad \beta_{M F}=\frac{1}{2} \\
& M\left(T_{c}, B\right) \sim|B|^{\delta}, \quad \delta_{M F}=3 \\
& \chi(T, B=0) \sim\left|T_{c}-T\right|^{-\gamma}, \quad \gamma_{M F}=1 \\
& C_{B}(T, B=0) \sim\left|T_{c}-T\right|^{-\alpha}, \quad \alpha_{M F}=0
\end{aligned}
$$

Exponent	2D	3D	Mean field
α	0	0.11	0
β	$1 / 8$	0.32	$1 / 2$
γ	$7 / 4$	1.24	1
δ	15	4.90	3

Mean field Ising universality class

Correspondence between magnetics and fluids

Gas-Liquid	Magnets
Volume, V or density, ρ	Mean magnetization, $-M$
Pressure, P	Magnetic field, B
Gibbs free energy, $G(P, T)$	Gibbs free energy, $G(B, T)$
Compressibility, $\kappa_{T}=-\frac{1}{V} \frac{\partial V}{\partial P}$	Susceptibility, $\chi=\frac{\partial M}{\partial B}$
Heat capacity, $C_{P}=-T\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{P}$	Heat capacity, $C_{B}=-T\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{B}$

Density (Order parameter) $\quad \rho\left(T, P_{c}\right) \sim\left(T_{c}-T\right)^{\beta}, \quad \beta_{M F}=\frac{1}{2}$

Critical isotherm	$V\left(P, T_{c}\right) \sim P^{\delta}, \quad \delta_{M F}=3$
Compressibility	$\kappa_{T}(T) \sim\left\|T_{c}-T\right\|^{-\gamma}, \quad \gamma_{M F}=1$
Heat capacity	$C_{P}(T) \sim\left\|T_{c}-T\right\|^{-\alpha}, \quad \alpha_{M F}=0$

Critical isotherm

Compressibility
$\kappa_{T}(T) \sim\left|T_{c}-T\right|^{-\gamma}, \quad \gamma_{M F}=1$
Heat capacity
$C_{P}(T) \sim\left|T_{c}-T\right|^{-\alpha}, \quad \alpha_{M F}=0$

Correspondence between magnetics and fluids

Module VI: Stochastic processes and nonequilibrium statistical mechanics

- Central limit theorem
- Random walk, diffusion
- Poisson process
- Brownian motion

Central limit theorem: Limit distribution of sums

Suppose we have a set of N independent, identically distributed (i.i.d.) variables x_{i} drawn from the same parent distribution $p\left(x_{i}\right)$ with

1. Zero mean $\int d x x p(x)=\langle x\rangle=0$
2. Finite variance $\int d x x^{2} p(x)=\sigma^{2}<\infty$

The sum of N variables $X=\sum_{i=1}^{N} x_{i}$ is also a stochastic quantity which, in the limit of $N \gg 1$, is distributed according to the Gaussian distribution independent of the parent distributions $\boldsymbol{p}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$

Random walker

- For each state there are two options:
- RW takes a left jump $m+1 \rightarrow m$
- RW takes a right jump $m-1 \rightarrow m$

Particle stochastic dynamics

$\mathrm{m}_{\mathrm{n}+1}=\mathrm{m}_{\mathrm{n}}+\Delta x_{n}, \quad \Delta \mathrm{x}_{\mathrm{n}}=\left\{\begin{array}{l}+1, \text { with probability } \mathrm{p} \\ -1, \text { with probability } q\end{array}\right.$
Probability distribution function for R steps to the right after N steps $P_{N}(R)=\frac{N!}{R!(N-R)!} p^{R} q^{(N-R)}, \quad m=2 R-N$
Master equation for the evolution of $P_{N}(m)$

$$
P(m, N+1)=p P(m-1, N)+q P(m+1, N)
$$

Diffusion equation: continuum time and space limit of the master equation

$$
\begin{gathered}
\frac{\partial P(x, t)}{\partial t}=-v \frac{\partial P(x, t)}{\partial x}+D \frac{\partial^{2} P(x, t)}{\partial x^{2}}, \quad v=\frac{(p-q) \Delta \mathrm{x}}{\Delta t}, \quad D=\frac{\Delta x^{2}}{2 \Delta t} \\
P(x, t)=\frac{1}{\sqrt{4 \pi D t}} e^{-\frac{(x-v t)^{2}}{4 D t}}
\end{gathered}
$$

Poisson stochastic process

Describes discrete and independent random events that occur at a fixed rate, λ
Two important examples of such Poisson processes: radioactive decay and death process in population dynamics

Decay probability for one nucleus: $\boldsymbol{q}_{\boldsymbol{t}}=1-\boldsymbol{e}^{-\lambda t}$; Survival probability at time $\dagger \mathrm{p}_{\mathrm{t}}=\boldsymbol{e}^{-\lambda t}$
This is equivalent to the probability that $n=N$ nuclei survived the decay

$$
P_{t}(n)=\frac{N!}{n!(N-n)!} p_{t}^{n}\left(1-p_{t}\right)^{N-n}
$$

Poisson distribution: $\boldsymbol{N} \rightarrow \infty$, and $\boldsymbol{p}_{\boldsymbol{t}} \rightarrow \mathbf{0}$ with fixed $N p_{t}=\mu_{t}$

$$
P_{\mu_{t}}(n)=\frac{\mu_{t}^{n}}{n!} e^{-\mu_{t}}
$$

Master equation for Poisson process

i) The probability for $(n+1)$ survivers at t is $P(n+1, t)$ and probability that one of them will decay is $(n+1) q_{\Delta t} p_{\Delta t}^{n}$, hence this scenario gives a contribution $(n+1) q_{\Delta t} p_{\Delta t}^{n} P(n+1, t)$.
ii) The probability that one out of (n) will decay is the binomial distribution $n q_{\Delta t} p_{\Delta t}^{n-1}$. The probability for (n) survivers at t is $P(n, t)$ and the probability that one of them will decay is $n q_{\Delta t} p_{\Delta t}^{n-1}$, hence change in probability is proportional to $-\mathrm{nq}_{\Delta t} p_{\Delta t}^{n-1} P(n, t)$.

$$
P(n, t+\Delta t)=P(n, t)+(n+1) q_{\Delta t} p_{\Delta t}^{n} P(n+1, t)-\mathrm{nq}_{\Delta t} p_{\Delta t}^{n-1} P(n, t)
$$

Taylor expanding around t and taking the limit of $\Delta t \ll 1$

$$
\begin{equation*}
\frac{\partial P(n, t)}{\partial t}=\lambda(n+1) P(n+1, t)-\lambda n P(n, t), \quad n=1, \cdots N \tag{1}
\end{equation*}
$$

Where $\frac{q_{\Delta t}}{\Delta t}=\frac{1-e^{-\lambda \Delta t}}{\Delta t} \rightarrow \lambda$ is a fixed decaying rate.
Solution of this master equation is obtain by the generating function $\quad G(s, t)=\sum_{n=0}^{N} s^{n} P(n, t), \mathrm{s}<1$

Probability of have n surving nuclei at time t is $P(n, t)=\frac{N!}{n!(N-n)!} p_{t}^{n}\left(1-p_{t}\right)^{N-n}, p_{t}=e^{-\lambda t}$

Brownian motion and Langevin equation

- Random motion of particles suspended in a fluid. These are also called colloidal particles and are much bigger in size than the fluid particles

The Brownian particle evolves by the Langevin equation. It is a generalization of the Newton's law of motion when the Brownian particle experiences a random force through the random collisions with the fluid particles. In addition, there is a drag force because the fluid is viscous.

Langevin equation:

$$
\begin{gathered}
m \frac{d v}{d t}=-\alpha v+R(t) \\
\langle R(t)\rangle=0 \\
\left\langle R(t) R\left(t^{\prime}\right)\right\rangle=2 \alpha k T \delta\left(\mathrm{t}-\mathrm{t}^{\prime}\right)
\end{gathered}
$$

The amplitude of the random force is determined by the local equilibrium assumption: the mean kinetic energy of the $B M$ is the same the energy of the fluid particles (equal to the equipartition of energy)

Diffusion of the BM and Einstein's relation

$t \ll \frac{m}{\alpha}$ Ballistic Regime: on short timescales, the Brownian particles is advected by the fluid with a mean velocity determined by the kinetic energy of the fluid particles

$$
\left\langle x(t)^{2}\right\rangle=v_{\text {thermal }}^{2} t^{2}
$$

$v_{\text {thermal }}=\frac{\sqrt{\left(x(t)^{2}\right)}}{t}=\frac{k T}{m}$ from the equipartition of energy
$t \gg \frac{m}{\alpha}$ Diffusive Regime: on long timescales, the Brownian particles diffuses like a random walker

$$
\left\langle x(t)^{2}\right\rangle=2 \boldsymbol{D} t
$$

Einstein's relation $D=\frac{k T}{\alpha}$

