
Pensum based on Lecture notes (F. Ravndal)

Module I: Equilibrium statistical ensemble (Ch. 1.1-1.8, 3.1-3.6)
Module II: Non-interacting particles (Ch. 2.1-2.5 )
Module III: Weakly interacting particles (Ch. 4.1-4.3)
Module IV: Ideal quantum gases (5.1-5.7)
Module V:  Magnetism (6.1-6.6)
Module VI: Stochastic and non-equilibrium processes (7.1-7.3; 8.1-8.2)

Final exam: 04. June 2019, 14:30 (4 hours)
Sal 3B Silurveien 2

Allowed material at the exam: 
• Electronic calculator
• K. Rottman: Matematisk formelsamling
• Øgrim and Lian or Angell and Lian: Fysiske størrelser og enheter
• One A4 sheet of notes (both sides can be used)
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Module I: Equilibrium statistical ensemble

• Thermodynamics laws

• Thermodynamic potentials and Legendre transforms

• Response functions and Maxwell’s relations

• Liouville’s theorem

• Microcanonical ensemble 

• Canonical ensemble 

• Grand-canonical ensemble 
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Thermodynamic potential  and Legendre transforms

𝐶" =
𝜕𝑈
𝜕𝑇 "

, 𝐶( =
𝜕𝐻
𝜕𝑇 (

, 𝛼 =
1
𝑉

𝜕𝑉
𝜕𝑇 (

𝐾. = −
1
𝑉

𝜕𝑉
𝜕𝑃 .

, 𝐾1 = −
1
𝑉

𝜕𝑉
𝜕𝑃 1
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𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁, 𝑈(𝑇, 𝑉, 𝑁) = 𝑆𝑇 − 𝑃𝑉 + 𝜇𝑁
𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁, 𝐻(𝑆, 𝑃, 𝑁) = 𝑈(𝑆, 𝑉, 𝑁) + 𝑃𝑉
𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁, 𝐹 𝑇, 𝑉, 𝑁 = 𝑈 𝑆, 𝑉, 𝑁 − 𝑇𝑆
𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁, 𝐺 𝑇, 𝑃, 𝑁 = 𝑈 𝑆, 𝑉, 𝑁 − 𝑇𝑆 + 𝑃𝑉

Thermodynamic 
Potentials

Thermodynamic 
(natural) Variables

U (S,V,N) S, V, N

H (S,P,N) S, P, N

F (T,V,N) V, T, N

G (T,P,N) P, T, N

V T

PS

𝑭(𝑻, 𝑽)

𝑮(𝑻, 𝑷)

𝑯(𝑺, 𝑷)

𝑼(𝑺, 𝑽)

Extensive variables Intensive variables 



Liouville’s theorem 
• Ensemble density 𝜌(𝑝, 𝑞) is the number of systems 

that occupy a microstate per unit phase space
volume

• 𝜌 𝑝, 𝑞 𝑑𝜔 is the probability of finding the systems in 
a given microstate between 𝑝, 𝑞 and 𝑝𝑑𝑝, 𝑞 + 𝑑𝜌

∫ 𝜌 𝑝, 𝑞 𝑑𝜔 = 1
• Liouville’s theorem: Ensemble density is conserved

HI
HJ
+ 𝜌, 𝐻 = 0

• For equilibrium systems 𝜌,𝐻 = 0, with a general 
solution

𝜌 = 𝜌(𝐻)
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𝒅𝝎 ≡
𝒅𝟑𝑵𝒑𝒅𝟑𝑵𝒒
𝟐𝝅ℏ 𝟑𝑵

V
WX
𝑑𝜔 𝜌

V
WY
𝑑𝜔 𝜌



Microcanonical ensemble (isolated systems) 

• Equilibrium ensemble density 
𝜌 𝑝, 𝑞 = Z

[
𝛿(𝐻 𝑝, 𝑞 − 𝐸),

• Microcanonical density of states: phase space area over all 
microstate with a fixed energy E 

Σ 𝐸, 𝑉, 𝑁 = ∫𝑑𝜔 𝛿 𝐻 𝑝, 𝑞 − 𝐸

• Microcanonical phase space volume
Ω 𝐸, 𝑉, 𝑁 = ∫̀ a,b cd 𝑑𝜔 = ∫e

f 𝑑𝐸′ Σ 𝐸′
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Thermodynamics of microcanonical ensemble  

Boltzmann Entropy

𝑆(𝑈, 𝑉, 𝑁) = 𝑘 lnΩ (𝑈, 𝑉, 𝑁)

Temperature Z
. =

H1
Hd ",k

Pressure (
. =

H1
H" d,k

Chemical potential l
. = − H1

Hk d,"

Helmholtz free energy 𝐹 = 𝑈 − 𝑇𝑆 = 𝑈 − 𝑘𝑇 lnΩ
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Ideal gas in the microcanonical ensemble

• Phase space volume

Ω 𝐸 =
Vk

2𝜋ℏ pk
𝜋
pk
q

3𝑁/2 !
2𝑚𝐸

pk
q

• Density of states Σ 𝐸 = H�
Hf

• Entropy
𝑆(𝐸, 𝑉, 𝑁) = 𝑘𝑁 �

q + log
"
k

�f
p�kℏ�

�
�

• Temperature

1
𝑇 =

𝜕𝑆
𝜕𝐸 = 𝑘𝑁

𝜕
𝜕𝐸 log 𝐸

p
q =

3𝑁𝑘
2

1
𝐸 → 𝐸 =

3
2𝑁𝑘𝑇

• Pressure
𝑃
𝑇
=
𝜕𝑆
𝜕𝑉

=
𝑁𝑘
𝑉
→ 𝑃𝑉 = 𝑁𝑘𝑇
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Canonical ensemble (systems in a thermal bath) 

• Equilibrium ensemble density             𝜌 𝑝, 𝑞 = Z
�
𝑒��`(a,b)

• Canonical partition function Z T, V, N = ∫ 𝑑𝜔𝑒��`(a,b)

𝑍 = ∫ 𝑑𝐸 𝑒��fΣ 𝐸
𝑍 = 𝑒���

• Probability of a macrostate with energy E, 𝑃 𝐸 = [ f
�

𝑒��f

• Average energy 𝑬 = − 𝝏
𝝏𝜷

𝒍𝒐𝒈 𝒁(𝑻)

• Fluctuations around the average energy  𝜟𝑬𝟐 = 𝝏𝟐

𝝏𝜷𝟐
𝐥𝐨𝐠𝒁(𝑻)

𝑯(𝒑, 𝒒)

𝑇
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Ideal gas in the canonical ensemble

• 𝑍Z 𝑇, 𝑉 = "
 
∫ 𝑑p𝑝 𝑒�

¡¢�
�£ = "

¤�
, where Λ = Z

q��¦.
is the thermal

wavelength
• Gas of indistinguishable particles: 

𝑍 𝑇, 𝑉, 𝑁 =
𝑍Zk

𝑁!
=

𝑉k

𝑁! Λpk
== 𝑒���(.,",k)

• 𝑆 = − H�
H. "

= 𝑁𝑘 log "
k

• 𝑃 = − H�
H" .

= k¦.
"
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Grand canonical ensemble (system in a thermal and particle reservoir)

• Equilibrium ensemble density

𝜌 𝑝, 𝑞, 𝑛 =
1
𝛯
1
𝑛!
𝑒� l©�`(a,b)

• Grand-canonical partition function

𝛯 𝑇, 𝜇 = ª
©«e

¬
𝑒�l©

𝑛!
𝑍(𝑇, 𝑛)

𝛯 𝑇, 𝜇 = ª
©«e

¬

𝑒�l©𝑍©(𝑇)

𝛯 𝑇, 𝜇 = 𝑒��

• Distribution of particle number in a macrostate 𝑃 𝑁 = � .,k
®

𝑒�lk
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𝑯(𝒑, 𝒒)

𝑇, 𝜇



Ideal gas in the grand-canonical ensemble

• Ξ 𝑇, 𝑉, 𝜇 = ∑k«e¬ 𝑒�lk𝑍(𝑇, 𝑉, 𝑁)

• Ξ 𝑇, 𝑉, 𝜇 = ∑k«e¬ Z
k!

"
¤�
𝑒�l

k
= 𝑒±", where z = µ¡¶

¤�
𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑓𝑢𝑔𝑎𝑐𝑖𝑡𝑦

• Ξ 𝑇, 𝑉, 𝜇 = 𝑒±" = 𝑒���

• Landau free energy Ω = −𝑘𝑇𝑉 Á¡¶

¤�(.)

• N = H�
Hl
= 𝑉 Á¡¶

¤�(.)
= zV → Ω = −kT⟨𝑁⟩

• 𝑃 = −H�
H"
= 𝑘𝑇𝑧 → 𝑃 = k ¦.

"
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Module II: Non-interacting particles

• Boltzmann statistics

• Bose-Einstein distribution

• Fermi-Dirac distribution
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Maxwell-Boltzmann: free particles
• Equilibrium distribution of particles in an energy state

𝒏𝒊 =
𝑵
𝒁𝟏
𝐞�𝜷𝝐𝒊 = 𝒆�𝜷(𝝐𝒊�𝝁) ,   𝒁𝟏 = ∑𝒊 𝒆�𝜷𝝐𝒊 , 𝑵 = 𝒁𝟏𝒆𝜷𝝁

• Probability of a	specific microstate at	fixed T	and	𝜇 in	the equilibrium

𝑷 𝒔 =
𝟏

𝚵 𝑻, 𝝁
𝟏
𝑵𝒔!

𝒆�𝜷(𝑬𝒔�𝝁𝑵𝒔), 𝑁× =ª
Ø

𝑛Ø , 𝐸× =ª
Ø

𝜖Ø𝑛Ø

• Grand-canonical partition function (sum over particle numbers and sum over all the energy states for each
individual particle) 

𝚵 𝑻, 𝝁 =ª
𝑵𝒔

𝟏
𝑵𝒔!

ª
𝑬𝒔

𝒆�𝜷(𝑬𝒔�𝝁𝑵𝒔) =ª
𝑵𝒔

𝟏
𝑵𝒔!

Ú
𝒌«𝟏

𝑵𝒔

ª
𝝐𝒌

𝒆�𝜷(𝝐𝒌�𝝁)

Ξ 𝑇, 𝜇 =ª
𝑵𝒔

𝟏
𝑵𝒔!

𝝀ª
𝒊

𝒆�𝜷𝝐𝒊
𝑵𝒔

= 𝒆𝝀𝒁𝟏, 𝝀 = 𝒆𝜷𝝁, 𝒁𝟏 =ª
𝒊

𝒆�𝜷𝝐𝒊
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Maxwell-Boltzmann: free particles
• Probability	of having 𝑁× particles in	a	macroscopic state at	𝑇 and	𝜇

𝑃 𝑁× =
1

Ξ 𝑇, 𝜇
1
𝑁×!

ª
𝑬𝒔

𝑒��(fÞ�l kÞ) =
1
𝑁×!

𝑍Z𝜆 kÞ𝑒��Yà

𝑃 𝑁×, 𝑁 =
1
𝑁×!

𝑁kÞ𝑒�k , 𝑁× = 𝑁(𝑇, 𝜇) = 𝑍Z(𝑇)𝜆(𝑇, 𝜇)

Total	number of particles in	a	macrostate is	a	fluctuating (random	)quantity drawn
from	a	Poisson	distribution with 𝑁× = 𝑁 as	the average number
• Δ𝑁×q = 𝑁×q − 𝑁× q = 𝑁×

• Relative	number fluctuations ãkÞ�

kÞ � =
Z
k
= Z

�Yà
≪ 1
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Maxwell-Boltzmann: free particles
• Probability	for	an	occupation number n in		ϵæ energy state

𝑃Ø 𝑛 =
1
𝑛! 𝜆𝑒

��çè ©

∑©
1
𝑛! 𝜆𝑒

��çè ©
=

1
𝑛!

𝜆𝑒��çè
©

exp 𝜆𝑒��çè

𝑃Ø 𝑛, 𝑛Ø =
1
𝑛!
𝑛Ø©𝑒�©è, 𝑛Ø = 𝑛 Ø = 𝜆𝑒��çè

Occupation number of an	energy state is	also a	random	number following Poisson	
distribution with 𝑛Ø = 𝜆𝑒��çè

• Δ𝑛q Ø = 𝑛q Ø − 𝑛 Ø
q = 𝑛Ø

• Relative	number fluctuations
ã©� è
©è
� = Z

©è
= �YÁ¡êè

k
≪ 1
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Bose-Einstein statistics:
• Equilibrium (average) occupation number for an energy state

⟨𝒏𝒊⟩ =
𝟏

𝒆𝜷(𝝐𝒊�𝝁) − 𝟏
=

𝟏
𝒆𝜷𝝐𝒊𝝀�𝟏 − 𝟏

• Probability	of a	specific microstate at	fixed T	and	𝜇 in	the
equilibrium

𝑷 𝒔 =
𝟏

𝚵 𝑻, 𝝁
𝒆�𝜷(𝑬𝒔�𝝁𝑵𝒔), 𝑁× =ª

Ø

𝑛Ø , 𝐸× =ª
Ø

𝜖Ø𝑛Ø

• Grand-canonical partition function

Ξ(ëf) 𝑇, 𝜇 =Ú
Ø

ª
©è«e

¬

𝜆𝑒��çè
©è =Ú

Ø

1
1 − 𝜆𝑒��çè
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𝜖Ø 𝑔Ø, 𝑛Ø



Bose-Einstein statistics:
• Probability	for	having	𝑛 bosons	in	a	given	energy state

𝑃Ø
(ëf) 𝑛 = 1 − 𝜆𝑒��çè 𝜆𝑒��çè

©
=

1
⟨𝑛Ø⟩ + 1

⟨𝑛Ø⟩
⟨𝑛Ø⟩ + 1

©

geometric distribution:	probability that a	particle occupies an	energy state is	
independent of the number of particles already in	that states --- tendency of
«bunching»	together

Relative	number fluctuations
ã©� è
©è
� = Z

©è
+ 1

Increased number fluctuations relative	to	be	MB	statistics
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𝜖Ø 𝑔Ø, 𝑛Ø

𝑛q Ø = ª
©«e

¬

𝑛q
1

⟨𝑛Ø⟩ + 1
⟨𝑛Ø⟩

⟨𝑛Ø⟩ + 1

©

𝑛q Ø =
1

𝑛Ø + 1
𝑥
𝑑
𝑑𝑥

q
ª
©«e

¬

𝑥©

𝑛q Ø =
1

𝑛Ø + 1
𝑥
𝑑
𝑑𝑥

q 1
1 − 𝑥 , 𝑥 =

⟨𝑛Ø⟩
⟨𝑛Ø⟩ + 1

𝑛q Ø = 𝑛Ø + 2 𝑛Ø q



Fermi-Dirac statistics
Equilibrium occupation number for an energy state

𝒏𝒊 =
𝟏

𝒆𝜷(𝝐𝒊�𝝁) + 𝟏
=

𝟏
𝒆𝜷𝝐𝒊𝝀�𝟏 + 𝟏

• Probability	of a	specific microstate at	fixed T	and	𝜇 in	the equilibrium

𝑷 𝒔 =
𝟏

𝚵 𝑻, 𝝁 𝒆� 𝜷(𝑬𝒔�𝝁 𝑵𝒔), 𝑁× =ª
Ø

𝑛Ø , 𝐸× =ª
Ø

𝜖Ø𝑛Ø

• Grand-canonical partition function

Ξ 𝑇, 𝜇 =Ú
Ø

ª
©è

𝑒��©è çY�l =Ú
Ø

1 + 𝑒�� çè�l

18Fys4130, 2019

𝜖Ø 𝑔Ø > 𝑛Ø



Free fermions: Fermi-Dirac statistics
• Probability for	having	𝒏 free fermions	in	a	given	energy state 𝝐𝒊 at	fixed T	and	
𝝁 is	the same	as	the average occupation number 𝑛Ø

𝑃Ø
(�ö) 𝑛 =

𝜆𝑒��çè ©

1 + 𝜆𝑒��çè
= ÷1 − 𝑛Ø, 𝑛 = 0

𝑛Ø, 𝑛 = 1

• 𝑛q Ø = ∑Ø«eZ 𝑛q𝑃Ø(𝑛) = 𝑃Ø(1) = 𝑛Ø

• Relative mean square fluctuations: as the occupation probability increases, 
fluctuations are suppressed

Δ𝑛q Ø

𝑛Øq
=
1
𝑛Ø
− 1 → 0, 𝑎𝑠 𝑛Ø → 1

• Negative statistical correlation– statistical repelling force  
19Fys4130, 2019

𝜖Ø 𝑔Ø > 𝑛Ø



Classical limit: 𝜖Ø ≪ 𝑘𝑇, 𝜇(𝑇) ≪ 0
(high-T limit)

• Fermi Dirac/Bose-Einstein distribution: 

𝑛Ø =
1

𝑒� çè�l ± 1
= 𝑒�l

𝑒��çè
1 ± 𝑒��çè𝑒�l

≈ 𝑒�l𝑒��çè

• Maxwell Boltzmann distribution: 

𝑛Øúë =
𝑁
𝑍Z
𝑒��çè = 𝑒�l𝑒��çè

• Classical ideal gas limit: 𝜇 = −𝑘𝑇 ln "
k¤� .

≪ 0 →

𝑻 ≫ 𝑻∗ =
𝒉𝟐

𝟐𝝅𝒎𝒌
𝝆𝟐, 𝝆 =

𝑵
𝑽

20Fys4130, 2019



Module III: Weakly interacting particles: classical fluids 

• Virial theorem

• Mean-field theory and van der Waals fluids  

• Phase transitions in the van der Waals systems
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Classical gases and liquids
• Statistical mechanics of weakly-interacting classical indistinguishable particles

• Translational and rotational symmetric Hamiltonian 𝐻k

𝐻k 𝑝, 𝑞 =ª
!«Z

pk 𝑝!q

2𝑚
+ 𝑈(𝑞Z, 𝑞q,⋯ 𝑞pk)

𝐻k =ª
Ø«Z

k
�⃗�Ø q

2𝑚
+
1
2
ª
!$Ø

𝑢(𝑟Ø!) , 𝑟Ø! = 𝑟Ø − 𝑟! , 𝑟 = 𝑥, 𝑦, 𝑧 , �⃗� = (𝑝&, 𝑝', 𝑝±)

• Homogeneous and isotropic matter: gases and liquids

• 𝑍k 𝑇, 𝑁 = Z
k!
∫ 𝑑𝜔 𝑒��`( a,b = Z

k!
)(
¤�(

• 𝑄k = ∫ 𝑑k𝑟 𝑒��d +⃗Y,+⃗�,⋯,+⃗(

configurational partition function: contains all the information about the particle positions
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Correlation functions
Mean	density of particles is	uniform	for	a	translational and	isotropic system	

𝑛 𝑟 = ª
Ø«Z

k

𝛿 𝑟 − 𝑟Ø = 𝜌 =
𝑁
𝑉

Density correlation of pairs	of particles separated by	𝑟 − 𝑟′

𝑛 𝑟 𝑛 𝑟′ = ª
Ø«Z

k

ª
!«Z

k

𝛿 𝑟 − 𝑟Ø 𝛿 𝑟′ − 𝑟! ≡ 𝐺 𝑟 − 𝑟′

𝐺 𝑟 − 𝑟, = 𝜌q𝑔 𝑟 − 𝑟, + 𝜌𝛿 𝑟 − 𝑟′ ,
𝜌q𝑔 𝑟 − 𝑟′ ≡ 𝜌q𝑔 𝑟 − 𝑟′ = 𝜌q𝑔 𝑟
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Average properties
Average	energy

𝐸 =
3𝑁
2
𝑘𝑇 +

𝜌𝑁
2
∫ 𝑑𝑟 𝑢 𝑟 𝑔(𝑟)

Particle number fluctuations
Δ𝑁q = 𝑁 + 𝑁 𝜌∫ 𝑑𝑟 𝑔 𝑟 − 1

Virial theorem

2 𝐾 = − ª
¦

𝑟¦ ⋅ �⃗�¦ → 3𝑁𝑘𝑇 =
𝑁𝜌
2 ∫ 𝑑𝑟𝑟q 𝑢′(𝑟) 𝑔(𝑟) + 3𝑃𝑉

𝑃 = 𝜌 𝑘𝑇 −
𝜌
6
∫ 𝑑𝑟 𝑟 𝑢, 𝑟 𝑔 𝑟
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Mean-field approximation: van der Waals system
In	the mean field approximation,	we assume that all	particles experience
the same	effective potential field

𝑈 𝑟Z, 𝑟q,⋯ , 𝑟k =ª
Ø

ª
Ø$!

𝑢(𝑟Ø!) =ª
Ø«Z

k

𝑢 = 𝑁𝑢

Self-consistent equation

𝑢 =
𝑈k
𝑁 =

𝜌
2 ∫ 𝑑𝑟 𝑢 𝑟 𝑔 𝑟 = −

𝑁𝑎
𝑉 , 𝑎 > 0

Canonical	partition function
𝑍k =

1
𝑁!

𝑄k
Λpk

, 𝑄k = 𝑉 − 𝑁𝑏 k𝑒�k�2

Helmholtz free energy 𝐹k = −𝑘𝑇 ln 𝑍k

𝐹k = −𝑁𝑘𝑇 ln
𝑉

𝑁Λp 𝑇 + 1 − 𝑁𝑘𝑇 ln 1 −
𝑁𝑏
𝑉 −

𝑁q𝑎
𝑉

Equation	of state

𝑃 = 𝑘𝑇
𝑁

𝑉 − 𝑁𝑏 −
𝑎
𝑘𝑇

𝑁q

𝑉q
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Liquid-gas phase transitions
• Van der Waals equation of state for fluids 

𝑃 =
𝑁𝑘𝑇
𝑉 − 𝑁𝑏 −

𝑎𝑁q

𝑉q

• Abrupt phase transition is represented by the phase coexistance boundary
𝑃67 (𝑇67 ) in the P-T phase diagram 
• First order derivaties of the thermodynamic potential are discontinuous: entropy and 

volume
• Clausius Clapeyron relation: How the pressure depends on the temperature on the

vaporisation/condensation phase boundary

• Phase transition from liquid to vapor at a constant Gibbs free energy 𝐺(𝑃, 𝑇, 𝑁)

• There is a unique critical point (𝐓𝐜, 𝑷𝒄, 𝑽𝒄) at which the phase transition turns 
critical
• First order derivaties of the thermodynamic potential are continuous, but the second order 

derivaties, like heat capacity, susceptibility, are power-law divergent neat the critical point
• Critical phase transitions are robust to microscopic details and exhibit universal scaling

properties, e.g. critical scaling exponents
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Abrupt phase transition
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Critical phase transition
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Module IV: Ideal quantum gases

• Blackbody radiation: Photon gas

• Debye model: phonon gas

• Ideal Bose gas: Bose Einstein condensation

• Ideal Fermi gas: Degenerate Fermi gases
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Ideal quantum gas
Consider a system of 𝑁 = ∑! 𝑛! fre. quantum particles with number 𝑛! of particles in each energy state 𝜖!

Fermions: 𝑛! = 0,1
Bosons:     𝑛! = 0,1,2,⋯

Grand-canonical partition function: 
Unconditioned sum weighted by the Gibbs factor over all microstates with {𝑛!} partition of particles between the energy levels {𝜖!}, 

Ξ = ª
{©=}

𝑒�� ∑=(ç=�l)©= =Ú
!

ª
©=

𝑒�� ç=�l ©=

Grand-canonical partition function:

Ξ = ∏!
Z

Z±Á?¡ ê=?¶

∓Z
, ÷ 𝑡𝑜𝑝 𝑠𝑖𝑔𝑛: 𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠𝑏𝑜𝑡𝑡𝑜𝑚 𝑠𝑖𝑔𝑛: 𝑏𝑜𝑠𝑜𝑛𝑠

Landau free energy:  Ω(T, V, 𝜇) = −𝑃𝑉 = −𝑘𝑇 log Ξ

Ω = ∓𝑘𝑇ª
!

log 1 ± 𝑒�� ç=�l
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Thermodynamics of ideal quantum gases

Pressure 𝑃 𝑇, 𝜇

𝑃𝑉 = ±𝑘𝑇∫ 𝑑𝜖𝐷 𝜖 log 1 ± 𝑒�� ç�l (1)

Equation for the average number of particles provides the relationship between the density
𝜌 and chemical potential 𝜇:

𝑁 𝑇, 𝑉, 𝜇 = ∫ 𝑑𝜖𝐷 𝜖
1

𝑒� ç�l ± 1
= ∫ 𝑑𝜖 𝐷 𝜖 𝑛 ç (2)

Average energy:

𝐸 𝑇, 𝑉, 𝜇 = ∫ 𝑑𝜖𝐷 𝜖
𝜖

𝑒� ç�l ± 1
= ∫ 𝑑𝜖 𝐷 𝜖 𝑛 ç𝜖 (3)

For systems with non-zero 𝜇, we use Eq. (2) as the equation that determines 𝜇(𝜌) and eliminate the 𝜇
dependence in Eqs. (1) and (3), so that we can find the equation of state 𝑃 𝑇, 𝜌 and the energy 𝐸(𝑇, 𝜌)
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Photon gas: uncountable photons 𝜇 ≡ 0
Grand-canonical partition function:

Ξ =Ú
©

1
1 − 𝑒��ℏ4¦

Landau potential:

Ω T, V = −𝑃𝑉 = 𝑘𝑇 ª
©

ln 1 − 𝑒��ℏ4¦ = 𝑘𝑇∫ 𝑑𝑛 𝐷 𝑛 ln 1 − 𝑒�
� 4
C ©

Density of states
𝐷 𝑛 𝑑𝑛 = 2×4𝜋𝑛q𝑑𝑛 number of modes with quantum number between n and n+dn
𝐷 𝑛 𝑑𝑛 = 𝐷¦ 𝑘 𝑑𝑘 = 𝐷W 𝜔 𝑑𝜔 = 𝐷ç 𝜖 𝜖

• 𝐷¦ 𝑘 = "
��
𝑘q, 𝐷W 𝜔 = "

��4�
𝜔q, 𝐷ç 𝜖 = "

��ℏ�4�
𝜖q

Pressure: 𝑃𝑉 = −𝑘𝑇∫ 𝑑𝜖𝐷(𝜖) log 1 − 𝑒��ç

Average number of particles:           𝑁 = ∫ 𝑑𝜖 𝐷 𝜖 𝑛 ç = ∫ 𝑑𝜖𝐷(𝜖) Z
Á¡ê�Z

Average energy:        𝐸 = ∫ 𝑑𝜖 𝐷 𝜖 𝑛 ç𝜖 = ∫ 𝑑𝜖𝐷 𝜖 ç
Á¡ê�Z
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Planck distribution: 
Spectral energy distribution of a photon gas 
Average	energy density of a	photon gas:	

𝐸 𝑇, 𝑉
𝑉 =

1
𝑉 ∫ 𝑑𝜔

𝐷W 𝜔 ℏ𝜔
𝑒�ℏW − 1

=
ℏ

𝜋q𝑐p
V
e

¬
𝑑𝜔

𝜔p

𝑒�ℏW − 1
=

𝜋q𝑘F

15𝑐pℏp
𝑇F

Energy		per	unit	volume at	a	given	frequency 𝜔
𝐸
𝑉
= ∫ 𝑑𝜔ℇ(𝜔, 𝑇)

ℇ 𝜔, 𝑇 =
ℏ

𝜋q𝑐p
𝜔p

𝑒�ℏW − 1
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Phonon gas: Debye model

Atoms vibrate with different frequencies and a linear dispersion
𝜔 = 𝑘𝑣, where 𝑣 is the sound wave in the solid

• Density of elastic modes is analogous to the density of states for photons

(in the long-wavelength approximation, continuum elastic medium)  

𝐷W 𝜔 = 3
𝑉
2𝜋q

𝜔q

𝑣q
𝑑𝑘
𝑑𝜔

= 3
𝑉
2𝜋q

𝜔q

𝑣p
, 𝑓𝑜𝑟 0 ≤ 𝜔 ≤ 𝜔ö

• Total number of modes: 3𝑁 normal modes (in 3D) for N atoms

3𝑁 = V
e

WK
𝑑𝜔𝐷 𝜔 = 3

𝑉
2𝜋q𝑣p Ve

WK
𝑑𝜔𝜔q

Debye frequency 𝜔ö = 𝑣 L��k
"

Y
� → 𝜔ö =

q�M
àNOP

= 𝑣 6𝜋q𝜌
Y
�, 𝜌 = k

"
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Debye model: heat capacity of crystals
• Total average energy of phonons

𝑈 𝑇, 𝑉 = V
e

WK
𝑑𝜔𝐷 𝜔

ℏ𝜔
𝑒�ℏW − 1

= 3𝑘
𝑉

2𝜋q𝑣p
V
e

WK
𝑑𝜔𝜔q

ℏ𝜔
𝑒�ℏW − 1

• Heat capacity

𝐶" 𝑇 =
𝜕𝑈
𝜕𝑇 "

= 3𝑘
𝑉

2𝜋q𝑣p
V
e

WK
𝑑𝜔𝜔q

ℏ𝜔
𝑘𝑇

q 𝑒�ℏW

𝑒�ℏW − 1 q

𝐶" 𝑇 = 9𝑁𝑘
𝑇
𝑇𝐷

p
𝐹
𝑇ö
𝑇

, 𝐹 𝑦 = V
e

'
𝑑𝑥

𝑥F𝑒&

𝑒& − 1 q

𝑪𝑽 𝑻 ≈ 𝟑𝑵𝒌, 𝑻 ≫ 𝑻𝑫

𝐶" 𝑇 ≈
12
5
𝑁𝑘𝜋F

𝑇
𝑇ö

p
, 𝑻 ≪ 𝑻𝑫
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Ideal Bose gas: Density of states in 3D
• Energy levels for a particle in a box with periodic boundary conditions:

𝜖© =
ℏ�

q�
q�
C

q
𝑛 q = ℏ�

q�
q�
C

q
𝑛q, 𝑛 = 𝑛&, 𝑛', 𝑛± , 𝑛&,',± integers

• Quantum state of the particle is described by its wavefunction 𝜓Z = 𝑒
�Uè
V ©⋅+⃗, which is determined by 

𝑛

Number of available states of modes between 𝑛 and	𝑛 + 𝑑𝑛 in	3D
𝐷 𝑛 𝑑𝑛 = 4𝜋𝑛q𝑑𝑛

𝐷ç 𝜖 𝑑𝜖 = 𝐷 𝑛 𝑑𝑛 → 𝐷ç 𝜖 =
𝑉
2𝜋q

𝑚p/q

ℏp 𝜖
Z
q

Average number of particles:     𝑁 = ∫ 𝑑𝜖𝐷ç(𝜖)
Z

Á¡ ê?¶ �Z

Average energy:       𝑈 = ∫ 𝑑𝜖𝐷ç(𝜖)
ç

Á¡ ê?¶ �Z

Pressure:       𝑃𝑉 = −𝑘𝑇∫ 𝑑𝜖𝐷ç(𝜖) ln 1 − 𝑒�� ç�l

36

𝑦

𝑧

𝑥

𝐿
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Ideal Bose gas
At		a	given	temperature T,	density 𝜌 and	chemical potential 𝜇 are related by	the following equation

𝜌 𝑇, 𝜇 =
1
𝑉

1
𝜆�Z − 1

+ Λ�p 𝑇
2
𝜋
V
e

¬
𝑑𝑥

𝑥
Z
q

𝑒& − 1

𝜌(𝑇, 𝜇) = 𝜌e 𝑇, 𝜇 + 𝜌Á& 𝑇, 𝜇 , 𝜆 = 𝑒�l

Critical temperature for Bose Einstein condensation: 

Determined by the density of the bose gas when 𝜇 = 𝟎: 𝑻𝒄(𝝆) =
𝒉𝟐

𝟐𝝅𝒎𝒌
𝝆

𝜻 𝟑
𝟐

𝟐
𝟑

• 𝑻 ≤ 𝑻𝒄: Density is	a	mixture of condensed (dominant	)	and	normal	gas	

𝝆 = 𝝆𝟎(𝑻) + 𝝆𝒆𝒙(𝑻) = 𝜦�𝟑 𝑻𝒄 𝜻(𝟑/𝟐)
• 𝑻 > 𝑻𝒄: Density is		dominated by	that of the normal	gas		

𝝆(𝑻, 𝝁) = 𝝆𝒆𝒙(𝑻, 𝝁) = 𝜦�𝟑 𝑻 𝒈𝟑
𝟐
𝝀

This equation determines the chemical potential 𝝁(𝑻, 𝝆)
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Bose-Einstein condensate 𝑇 < 𝑇4 (𝜆 = 1, 𝜇 = 0)

𝝆 = 𝝆𝟎(𝑻) + 𝝆𝒆𝒙(𝑻) = 𝜦�𝟑 𝑻𝒄 𝜻(𝟑/𝟐)
A macroscopic fraction of particles condense into the ground state with the zero momentum
• Chemical potential 𝝁 = 𝟎 remains zero for all temperatures below 𝑻𝒄
• Excess density depends only on temperature and actually decreases with decreasing temperature
• Ground state density becomes non-zero and increases with decreasing temperature

𝜌e
𝜌 = 1 −

𝜌Á&(𝑇)
𝜌 = 1 −

Λp(𝑇4)
Λp(𝑇) = 1 −

𝑇
𝑇4

p/q

Pressure becomes independent of density
𝑃
𝑘𝑇

=
1

Λp 𝑇
𝑔�/q 1 → 𝑃(𝑇) ∼ 𝑇

�
q

Average kinetic energy 𝑈 = p
q
𝑁𝑘𝑇 𝜌�ZΛ�p 𝑇 𝑔�/q 𝜆

𝑈 =
3
2
𝑁𝑘𝑇

𝑇
𝑇4

p
q
𝑔�
q
𝜆

𝜁 3
2

, 𝑇 < 𝑇4

38Fys4130, 2019

𝑇/𝑇4



Ideal Fermi gases: Density of states in 3D

• ΨZ(𝒓) = 𝑒
�Uè
V 𝒏⋅𝒓 1-particle wave function

• Each fermion (i.e. electron) has a spin moment = ±Z
q

• Energy levels a fermion in a box 𝑉 = 𝐿p with periodic boundary conditions:  𝜖© =
ℏ�

q�
q�
C

q
𝑛q, 

Number of available states between a mode with n between 𝑛 𝑎𝑛𝑑 𝑛 + 𝑑𝑛:𝐷 𝑛 𝑑𝑛 = 2×4𝜋𝑛q𝑑𝑛

ª
𝒏

:=2×∫ 𝑑𝑛 4𝜋𝑛q = ∫ 𝑑𝑛 𝐷(𝑛)

Density of states corresponding to energy 𝜖:

𝐷 𝜖 = 𝐷 𝑛 `©
`ç
→ 𝐷 𝜖 = 2 "

q��
��/�

ℏ�
𝜖
Y
�

The difference with respect to the density of states of bosons is the spin degeneracy of the energy levels (hence the extra factor of 2).
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Fermi distribution at T=0 K

𝑓 𝜖 = Z
Á¡ ê?¶ aZ

→.→e ÷
1, 𝜖 < 𝜇
0, 𝜖 > 𝜇

𝜖� ≡ 𝜇 Fermi energy level below which all states are occupied

Determined by the gas density 𝜖� 𝜌 = ℏ�

q�
3𝜋q𝜌

�
�

𝜌(𝜖�) =
1
3𝜋q

2𝑚
ℏq

p/q
𝜖�
p
q

Energy 
𝐸 e

𝑉 =
2
𝜋q

𝑚p/q

ℏp V
e

çb
𝑑𝜖 𝜖

p
q =

1
5𝜋q

2𝑚
ℏq

p/q
𝜖�
�
q

Exclusion pressure

𝑃e =
ℏq

15𝜋q𝑚q 3𝜋q𝜌
�
p
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Denenerate ideal Fermi gas 𝑇 < 𝑇�
The	Fermi	temperature is	most	often much larges than the gas	temperature

Therefore,	even though the fermi gas	is	at	finite temperature,	it	behaves as	if it	was a	near zero	temperature when 𝑇 ≪ 𝑇�

Sommerfeld expansion:			¦.
l
≪ 1 :

𝜌 =
1
3𝜋q

(2𝑚)
p
q

ℏp
𝜇p/q 1 +

𝜋q

8
𝑘𝑇
𝜇

q

+⋯ , 𝜌 =
1
3𝜋q

2𝑚
ℏq

p/q
𝜖�
p
q

𝜇 = 𝜖� 1 −
𝜋q

12
𝑘𝑇
𝜖�

q
+⋯

𝐸
𝑉
=

1
5𝜋q

(2𝑚)
p
q

ℏp 𝜖�
�/q 1 +

5𝜋q

12
𝑘𝑇
𝜖�

q

+⋯

Ce =
1
2 𝑁 𝜋q𝑘

𝑇
𝑇�
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Equation of state for quantum gases: ℎ𝑖𝑔ℎ 𝑇

Pgµhiæjkl ≈ 𝑘𝑇𝜌 1 + 2�
m
�Λp𝜌

Pnjlj©× ≈ 𝑘𝑇𝜌 1 − 2�
o
�Λp𝜌

Nonzero second virial coeff.		𝐵q 𝑇 ≠ 0

Bosons: 𝐵q 𝑇 < 0 statistical attraction

Fermions: 𝐵q 𝑇 > 0 statistical repulsion
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Module V:  Magnetism

• Paramagnetism

• Ferromagnetism and Ising model

• Weiss mean field theory

• Ising phase transition
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Ising model for ferromagnets

A system of N spins 𝑠Ø = ±1 on a periodic lattice and in a uniform 
magnetic field 𝐵. Spins interact with their nearest neighbor on the lattice

𝐻k = −𝐽ª
Ø

ª
!«

©.©. tu Ø

𝑠Ø𝑠! −ª
Ø

𝑠Ø𝐵 , (𝜇ë= 1)

Ø J > 0 is the coupling constant, such that the energy is minimized when

neighboring spins point in the same direction

Ø Summation over the nearest neighbors (n.n.) j atoms that are coupled to the ith

atom on a crystal lattice (short hand notation used sometime ≡ ij ) 

Ø The form of the spin-spin interaction as −𝐽𝑠Ø𝑠! originates the Coulomb interactions

between the electrons (spin carriers); magnetic dipole interactions are too weak.  
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Ising model in 1D 

𝐻k = −𝐽ª
Ø«e

k�Z

𝑠Ø𝑠ØaZ −ª
Ø

𝑠Ø𝐵 , 𝑠Ø = ±1

Periodic boundary conditions 𝑠k ≡ 𝑠e

Partition function for N spins: Transfer matrix
𝑍k =ª

×è

𝑒��`(({×è}) = 𝑇𝑟 𝑇k = 𝜆Zk + 𝜆qk ≈ 𝜆Zk, 𝑓𝑜𝑟 𝑁 ≫ 1

𝑇 = 𝑒� yaë 𝑒��y
𝑒��y 𝑒� y�ë

Gibbs free energy 𝐺k = −𝑘𝑇 ln(𝑍k)

Mean magnetization 𝑀 𝑇,𝐵 = − H{( .,ë
Hë .

Any themal fluctuation destroys the net magnetization in the limit of zero applied field
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1D Ising model: No phase transition
At any nonzero temperature, it is energetically favorable to create
defects (kinks) due to thermal fluctuations

Change in energy for flipping a spin (kink in the ordered state) 
𝑈e = −𝑁𝐽 𝑜𝑟𝑑𝑒𝑟 , 𝑈Z = − 𝑁 − 2 𝐽 + 2𝐽 (𝑤𝑖𝑡ℎ 𝑎 𝑘𝑖𝑛𝑘) → Δ𝑈 = 4𝐽

Change in entropy for flipping a spin anywhere in the 1D chain (N sites) 
Δ𝑆 = 𝑘 log𝑁

The spin flipping due to thermal fluctuations is favored when it lowers the Helmholtz free energy

Δ𝐹 = Δ𝑈 − 𝑇Δ𝑆 < 0 → 𝐽 − 𝑘𝑇 log𝑁 < 0

This is always satisfied at any T > 0, hence the spin order is spontaneously broken by 
kinks due thermal fluctuations.
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Ising model in d>1: Critical phase transitions

47

Critical phase transition occurs at a unique point in the 𝐵 − 𝑇 diagram: (𝐵4 , 𝑇4)

Q: How do we theoretically predict this critical point and the behavior near it? 

A:  Mean-field approximation, Landau field theory, renormalization group techniques

𝑇 < 𝑇} 𝑇 ≈ 𝑇} 𝑇 > 𝑇}
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Weiss mean-field theory

48

𝐻k = −𝐽ª
Ø!

𝑠Ø𝑠! −ª
Ø

𝑠Ø𝐵 = −ª
Ø

𝑠Ø 𝐽 ª
!«©.©.(Ø)

±«q`

𝑠! + 𝐵

• Replace the neighboring spin 𝑠! by the mean + fluctuations

𝑠! = 𝑚 + 𝑠! −𝑚 = 𝑚 + 𝛿𝑠!

• Mean-field approxitimation:		Ignore the effect of fluctations

𝐻 = −∑Ø 𝑠Ø𝐵Áuu, where 𝐵Áuu = 𝐵 + 𝑧𝐽𝑚

Self-consistent equation 𝒎 ≡ ⟨𝒔⟩

𝒎 = 𝒕𝒂𝒏𝒉
𝑻𝒄
𝑻 𝒎+ 𝜷𝑩

𝑧 is the coordination number; 𝑧 = 2𝑑 for a 
square lattice (𝑧 = 4 in 2D, 𝑧 = 6 in 3D)

𝑠e 𝑧𝐽𝑚

𝑠e

𝑠q

𝑠p

𝑠p

𝑠Z
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Self-consistent equation

49

• Limit of 𝐵 = 0

𝒎 = 𝒕𝒂𝒏𝒉
𝒛𝑱𝒎
𝒌𝑻

• solved graphically by looking at the intersection points between
the diagonal curve and the tanh(𝑥)

Critical temperature: 𝑻𝒄 =
𝒛𝑱
𝒌

𝒎 = 𝒕𝒂𝒏𝒉
𝑻𝒄
𝑻
𝒎

• For 𝑇 > 𝑇4, there is only one root at 𝑚 = 0
• For 𝑇 < 𝑇4, there are three roots at 𝑚 = 0,±𝑚e(𝑇)
• The non-zero solutions depend on the temperature below 𝑇4
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Critical exponents for the magnetic phase transition
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Mean-field universality class

Fys4130, 2019

Order parameter                 𝑀(𝑇,𝐵 = 0) ∼ 𝑇4 − 𝑇 �, 𝛽ú� =
Z
q

Critical isotherm M(𝑇4 ,𝐵) ∼ |𝐵|� , 𝛿ú� = 3
Susceptibility 𝜒(𝑇,𝐵 = 0) ∼ |𝑇4 − 𝑇|�� , 𝛾ú� = 1
Heat capacity 𝐶ë(𝑇,𝐵 = 0) ∼ |𝑇4 − 𝑇|�� , 𝛼ú� = 0

Exponent 2D 3D Mean field

𝛼 0 0.11 0

𝛽 1/8 0.32 1/2

𝛾 7/4 1.24 1

𝛿 15 4.90 3



Mean field Ising universality class
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Correspondence between magnetics and fluids

Gas-Liquid Magnets

Volume, 𝑉 or density, 𝜌 Mean magnetization, −𝑀

Pressure, 𝑃 Magnetic field, 𝐵

Gibbs free energy, 𝐺(𝑃, 𝑇) Gibbs free energy, 𝐺(𝐵, 𝑇)

Compressibility, 𝜅. = − Z
"
H"
H(

Susceptibility, 𝜒 = Hú
Hë

Heat capacity, 𝐶( = −𝑇 H�{
H.� (

Heat capacity, 𝐶ë = −𝑇 H�{
H.� ë

Fys4130, 2019

Density (Order parameter)    𝜌(𝑇, 𝑃4) ∼ 𝑇4 − 𝑇 �, 𝛽ú� =
Z
q

Critical isotherm 𝑉(𝑃, 𝑇4) ∼ 𝑃� , 𝛿ú� = 3
Compressibility 𝜅.(𝑇) ∼ |𝑇4 − 𝑇|�� , 𝛾ú� = 1
Heat capacity 𝐶((𝑇) ∼ |𝑇4 − 𝑇|�� , 𝛼ú� = 0
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Correspondence between magnetics and fluids
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Module VI:  Stochastic processes and nonequilibrium statistical mechanics

• Central limit theorem

• Random walk, diffusion

• Poisson process

• Brownian motion  
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Central limit theorem: Limit distribution of sums 

Suppose we have a set of 𝑁 independent, identically distributed (i.i.d.) variables 𝑥Ø drawn from 
the same parent distribution 𝑝(𝑥Ø) with

1. Zero mean ∫ 𝑑𝑥 𝑥 𝑝 𝑥 = 𝑥 = 0

2. Finite variance ∫ 𝑑𝑥 𝑥q 𝑝 𝑥 = 𝜎q < ∞

The sum of 𝑁 variables 𝑋 = ∑Ø«Zk 𝑥Ø is also a stochastic quantity which, in the limit of 𝑁 ≫ 1, is 
distributed according to the Gaussian distribution independent of the parent distributions 𝒑(𝒙𝒊)
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Random walker

• For each state there are two options: 
• RW takes a left jump 𝑚 + 1 → 𝑚
• RW takes a right jump 𝑚 − 1 → 𝑚

Particle stochastic dynamics

mkaZ = mk + Δ𝑥©, Δxk = ÷+1,with probability p−1,with probability 𝑞

Probability distribution function for 𝑅steps to the right after N steps 𝑃k 𝑅 = k!
�!(k��)!

𝑝�𝑞(k��), 𝑚 = 2𝑅 − 𝑁

Master equation for the evolution of 𝑃k 𝑚

𝑷 𝒎,𝑵 + 𝟏 = 𝒑𝑷 𝒎− 𝟏,𝑵 + 𝒒𝑷 𝒎+ 𝟏,𝑵
Diffusion equation: continuum time and space limit of the master equation

𝜕𝑃(𝑥, 𝑡)
𝜕𝑡

= −𝑣
𝜕𝑃 𝑥, 𝑡
𝜕𝑥

+ 𝐷
𝜕q𝑃 𝑥, 𝑡
𝜕𝑥q

, 𝑣 =
𝑝 − 𝑞 Δx
Δ𝑡

, 𝐷 =
Δ𝑥q

2Δ𝑡

𝑃 𝑥, 𝑡 =
1
4𝜋𝐷𝑡

𝑒�
(&�MJ)�
FöJ
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𝑝 𝑞 = 1 − 𝑝

𝑚 + 1𝑚𝑚 − 1
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𝑃 𝑥, 𝑡



Poisson stochastic process
Describes discrete and independent random events that occur at a fixed rate, 𝜆

Two important examples of such Poisson processes:  radioactive decay and death process in population
dynamics

Decay probability for one nucleus: 𝒒𝒕 = 𝟏 − 𝒆�à𝒕;  Survival probability at time t p� = 𝒆�à𝒕

This is equivalent to the probability that 𝑛 = 𝑁 nuclei survived the decay

𝑃J 𝑛 =
𝑁!

𝑛! 𝑁 − 𝑛 !
𝑝J© 1 − 𝑝J k�©

Poisson distribution: 𝑵 → ∞,𝒂𝒏𝒅 𝒑𝒕 → 𝟎 with fixed 𝑁𝑝J = 𝜇J

𝑃l� 𝑛 =
𝜇J©

𝑛!
𝑒�l�
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Master equation for Poisson process
i) The probability for (𝑛 + 1) survivers at 𝑡 is 𝑃 𝑛 + 1, 𝑡 and probability that one of them will decay is 𝑛 + 1 𝑞ãJ𝑝ãJ© , hence this scenario gives a 

contribution 𝑛 + 1 𝑞ãJ𝑝ãJ© 𝑃(𝑛 + 1, 𝑡) .

ii) The probability that one out of (𝑛) will decay is the binomial distribution 𝑛𝑞ãJ𝑝ãJ©�Z. The probability for (𝑛) survivers at 𝑡 is 𝑃 𝑛, 𝑡 and the

probability that one of them will decay is 𝑛𝑞ãJ𝑝ãJ©�Z, hence change in probability is proportional to  −nqã�𝑝ãJ©�Z𝑃 𝑛, 𝑡 .

𝑃 𝑛, 𝑡 + Δ𝑡 = 𝑃 𝑛, 𝑡 + 𝑛 + 1 𝑞ãJ𝑝ãJ© 𝑃 𝑛 + 1, 𝑡 − nqã�𝑝ãJ©�Z𝑃(𝑛, 𝑡)

Taylor expanding around 𝑡 and taking the limit of Δ𝑡 ≪ 1
𝜕𝑃(𝑛, 𝑡)
𝜕𝑡 = 𝜆 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 − 𝜆𝑛𝑃 𝑛, 𝑡 , 𝑛 = 1,⋯𝑁 (1)

Where b��
ãJ
= Z�Á?���

ãJ
→ 𝜆 is a fixed decaying rate.  

Solution of this master equation is obtain by the generating function 𝐺 𝑠, 𝑡 = ∑©«ek 𝑠© 𝑃 𝑛, 𝑡 , s < 1

Probability of have 𝑛 surving nuclei at time 𝑡 is 𝑃 𝑛, 𝑡 = k!
©! k�© !

𝑝J© 1 − 𝑝J k�©, 𝑝J = 𝑒�àJ
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Brownian motion and Langevin equation

58

• Random motion of particles suspended in a fluid. These are also called colloidal particles and are
much bigger in size than the fluid particles

The Brownian particle evolves by the Langevin equation. It is a generalization of the Newton’s law of motion 
when the Brownian particle experiences a random force through the random collisions with the fluid 
particles. In addition, there is a drag force because the fluid is viscous.   

Langevin equation: 

𝑚
𝑑𝑣
𝑑𝑡

= −𝛼𝑣 + 𝑅 𝑡

𝑅(𝑡) = 0
𝑅 𝑡 𝑅(𝑡′) = 2𝛼𝑘𝑇𝛿(t − t′)

The amplitude of the random force is determined by the local equilibrium assumption: the mean kinetic
energy of the BM is the same the energy of the fluid particles (equal to the equipartition of energy)
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Diffusion of the BM and Einstein’s relation
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𝑥 𝑡 q

2𝑡

𝑡

𝑡 ≪ �
�

Ballistic Regime: on short timescales, the Brownian
particles is advected by the fluid with a mean velocity
determined by the kinetic energy of the fluid particles

𝑥 𝑡 q = 𝑣��µhi�6q 𝑡q

𝑣J Á+��� =
& J �

J
= ¦.

�
from the equipartition of energy

𝑡 ≫ �
�

Diffusive Regime: on long timescales, the Brownian
particles diffuses like a random walker

𝑥 𝑡 q = 2𝑫𝑡

Einstein’s relation 𝑫 = 𝒌𝑻
𝜶


