Pensum based on Lecture notes (F. Ravndal)

Module I: Equilibrium statistical ensemble (Ch. 1.1-1.8, 3.1-3.6)
Module II: Non-interacting particles (Ch. 2.1-2.5 )

Module Ill: Weakly interacting particles (Ch. 4.1-4.3)

Module IV: Ideal quantum gases (5.1-5.7)

Module V: Magnetism (6.1-6.6)

Module VI: Stochastic and non-equilibrium processes (7.1-7.3; 8.1-8.2)

Final exam: 04. June 2019, 14:30 (4 hours)
Sal 3B Silurveien 2

Allowed material at the exam:
* Electronic calculator
« K. Rottman: Matematisk formelsamling
« @grim and Lian or Angell and Lian: Fysiske stgrrelser og enheter
« One A4 sheet of notes (both sides can be used)


https://www.google.no/maps/place/Silurveien+2,+0380+Oslo/@59.9268702,10.648933,17z/data=!3m1!4b1!4m5!3m4!1s0x46416da82dd800f3:0xf076aadb88c54fc0!8m2!3d59.9268675!4d10.6511217

Module I: Equilibrium statistical ensemble

Thermodynamics laws

Thermodynamic potentials and Legendre transforms

Response functions and Maxwell’s relations

Liouville’s theorem

Microcanonical ensemble

Canonical ensemble

Grand-canonical ensemble



Thermodynamic potential and Legendre transforms

Thermodynamic
Potentials

Thermodynamic
(natural) Variables

dU = TdS — PdV + udN,
dH = TdS + VdP + udN,

dF = —SdT — PdV + udN,
dG = —SdT + VdP + udN,

Extensive variables

Intensive variables

v F(T,V)

U(T,V,N) = ST — PV + uN
H(S,P,N) = U(S,V,N) + PV
F(T,V,N) = U(S,V,N) =TS
G(T,P,N) = U(S,V,N) — TS + PV

C_(aH) _1(6V>
p=\ar),s “~v\er/),

Ko — 1<6V) K 1(6V)
T v\ar/;’ S Vv \oP/

Fys4130, 2019 3



Liouville’s theorem

Ensemble density p(p, q) is the number of systems
that occupy a microstate per unit phase space

volume

p(p,Q)dw is the probability of finding the systems in
a given microstate between (p, q) and (pdp, g + dp)

Jp(p,@)dw =1 "

Liouville’s theorem: Ensemble density is conserved
ap _
—t1p,H} =0

For equilibrium systems {p, H} = 0, with a general
solution

dw = L

p=p(H)
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Microcanonical ensemble (isolated systems)

* Equilibrium ensemble density
p(p,q) = =8(H(p,q) — E),

* Microcanonical de.nsigl of states: phase space area over all
microstate with a fixed energy E

*(E,V,N) = [dwé(H(p,q) — E)

* Microcanonical phase space volume

E !/ !/
QEV,N) = [, - do = [ dE'E(E")



Thermodynamics of microcanonical ensemble

Boltzmann Entropy

S(U,V,N) = kInQ(U,V,N)

1 N
Temperature = = (—)
T ou V,.N
Pressure s (ﬁ)
T  \dV U,N
Chemical potential == — (ﬁ)
T ON uyv

Helmholtz free energy F=U-TS=U—kTInQ



ldeal gas in the microcanonical ensemble

Phase space volume 3N
vV T2 3N
QO(E) = 2mE) 2
( )aQ (2N BN 2y P
Density of states %(E) = —
Entropy 3
_ 5 V( mE \z
S(E,V,N) = kN{z T logN(anhZ) }
Temperature
1_65_kN6 E%_BNkl E—3NkT
T oE "9E BT T2 ETET2
Pressure
P 0S Nk
—=—=——> PV = NkT



Canonical ensemble (systems in a thermal bath) T

* Equilibrium ensemble density p(p,q) = %e‘ﬁH(p'Q) Hp, q)
e Canonical partition function Z(T,V,N) = [ dwe~ BH®.q)
Z = [ dE e PEL(E)
Z =e PF
* Probability of a macrostate with energy E,  P(E) = Z(ZE) e~ BE

* Average energy (E) = —% log Z(T)

* Fluctuations around the average energy (AEZ%) = aﬁz log Z(T)



Ideal gas in the canonical ensemble

2

« Z.(T,V) == [ d3 G =% where A = —-— is the thermal
(T, V) =~ pe = 35, where A = ———=is the therma
wavelength
* Gas of indistinguishable particles:
Zy Ve BF(T,V,N)
Z(T,V,N)=m= NI ASN e
OF 14
e S = — (6_T)V = Nklogﬁ



Grand canonical ensemble (system in a thermal and particle reservoir)

* Equilibrium ensemble density

T, u
11
— __— ,B(un-H(p,q))
p(p,q,n) = EPTI
* Grand-canonical partition function H(p, q)
= eﬁ/in
ETW) = ) = Z(T,n)

n=0

co

ET,0) = ) eFinz, (T)

n=0

E(T,u) = e P2

» Distribution of particle number in a macrostate P(N) =

Z(T N
(: )eﬁuN



Ideal gas in the grand-canonical ensemble

« (T, V, 1) = X%_oeP*NZ(T,V,N)

N

N
* E(T,V, 1) = Xn=0 ;, (F eﬁ“) = e?V, wherez = —5 s called fugacity

» E(T,V, ) = e? = e P2

* Landau free energy () = —kTV — NSIcs

eﬁu
« (N) = T = =zV - Q = —KT(N)

-P_—a—“_sz—>P_<”>"T
oV




Module Il: Non-interacting particles

e Boltzmann statistics
« Bose-Einstein distribution

e Fermi-Dirac distribution



Maxwell-Boltzmann: free particles

e Equilibrium distribution of particles in an energy state

ni — Zﬂle_ﬁei — e_ﬁ(ei_”) , Z1 = Zi e_ﬂei , N = Zleﬁﬂ

* Probability of a specific microstate at fixed T and u in the equilibrium

1 1
PO =ggon.® 0 Ns= z Mo b= z Fi
l l

* Grand-canonical pa rtition function (sum over particle numbers and sum over all the energy states for each

individual particle)

£(T, 1) = _z o= BE—1Ny) _ Zi HZ o~ Bler—1)
N, N
Ns Es NS k=1 €k
1 N
E(T,u) = N (lz e Bfi) = et A= efH, Z,= Z e Pei
Ng o i i
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Maxwell-Boltzmann: free particles

Probability of having N particles in a macroscopic state at T and u

11 1
— —B(Es—uNg) — _— Ng ,—Z1A
PINs) = 27 1 ngze N ad)e

S

1
P(Ns, N) = 2= N%e™,  (Ng) = N(T, 1) = Zy(T)A(T, 1)

Total number of particles in a macrostate is a fluctuating (random )quantity drawn
from a Poisson distribution with (N;) = N as the average number

* (AN$) = (Ng) — (Ns)? = (Ns)

: : ons AN _1_ 1
Relative number fluctuations N N Za <1
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Maxwell-Boltzmann: free particles

* Probability for an occupation number n in €; energy state

1 _RenT
P( ) m(ﬂ.e BEL) 1 (Ae‘ﬁei)n =
A B €3 % “n
l (an'(/‘{e—ﬁEi)n) n' eXp(/‘le_'BEi) E— g3 N3
i —_—
£2 % Go; Ny
Pilnny) = ymie™, = (n); = Ae~Fei 2 ; 9,

Occupation number of an energy state is also a random number following Poisson
distribution withn; = le P¢i

¢ (An?); = (n?); — (n);* = n;

* Relative number fluctuations ( 7t = —= <1



Bose-Einstein statistics:

e Equilibrium (average) occupation number for an energy state

©
B 1 B 1
<nl> B eﬁ(ei_”) —_ 1 - eﬁeil_l — 1 © 0 O
€i gi N
* Probability of a specific microstate at fixed T and p in the —
equilibrium
4
1 —B(Es—uNy)
P(S)ZE(T,u)e sTHYs), Ns=ZTli; ES=ZEini ;
l l
* Grand-canonical partition function
(¢'e) | 1
o =[] 369") Tl
Tw=| (2ePei) |G
l n;=0 L
4 6
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Bose-Einstein statistics:

* Probability for having n bosons in a given energy state

—[e€; —pPE; n 1 ( i> "
Pi(BE)(n) — (1 _/13 ﬁ L)(Ae 18 l) = (nl>-|— 1(<nl;l+ 1)

geometric distribution: probability that a particle occupies an energy state is
independent of the number of particles already in that states --- tendency of
«bunching» together

Relative number fluctuations ( R o |

Increased number fluctuations relative to be MB statistics

(n?); =

(n?); =

(n?); =

(n?); =

©
© 0 O

9gi 1
© ©
S 1 () \"
an(ni)+1<(ni;l+ 1)

n=0
2 (ee]

(ni)1+ 1 (x j_x> Z x"

n=0

2
(ni)1+ 1 (x dd_x> (1 i x>'

(n;) + 2(n;)?

(n;)

Ty 1



Fermi-Dirac statistics

Equilibrium occupation number for an energy state

B 1 B 1
CeBle-w 1+ 1 ePeig-141

n;

* Probability of a specific microstate at fixed T and u in the equilibrium

1
PO) =g e BN, Ne=Ym, E=)em

i i

* Grand-canonical partition function

2(T,u) = l 1<Z e—ﬁni(el—u)) — 1_[(1 + e—ﬁ(ei—ﬂ))

i

<n>

0.8

0.6

0.4+

0.2

€

© O

gi > n;




Free fermions: Fermi-Dirac statistics

Probability for having n free fermions in a given energy state ¢; at fixed T and
p is the same as the average occupation number 1;

()le_'gei)n {1 —n,, n=20

(FD) _ _
b (n)_1+/1e—/36t_ n;, n=1

(n?); = %:onzpi(n) = P(1) = ny

Relative mean square fluctuations: as the occupation probability increases,
fluctuations are suppressed

(ATlZ)i 1
s—=——1-0,asn; -1

Negative statistical correlation— statistical repelling force

€

© O

gi > n;




Classical limit: €; < kT, u(T) «< 0
(high-T limit)

T T T
Bose-Einstein

Maxwell-Boltzmann
Fermi-Dirac

® Fermi Dirac/Bose-Einstein distribution:

2.5

—BE;
= 1 — e:BH' € ~ eﬁﬂe—ﬁEi
eﬁ(ei—li) +1 1+ e~ BeipBu

n;

 Maxwell Boltzmann distribution: 15

(n)

nMB = 2 o=Bei = gBug—Pe 1
Z1
v 0.5
* Classical ideal gas limit: p = —kT In N (D) K0- |
O-4 -3 -2 -1 0 1 2 3 4
T 5 T h? 5 N (e-H)KT
“\zmmk )P PTV
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Module lll: Weakly interacting particles: classical fluids

* Virial theorem
* Mean-field theory and van der Waals fluids

* Phase transitions in the van der Waals systems



Classical gases and liquids

» Statistical mechanics of weakly-interacting classical indistinguishable particles -
* Translational and rotational symmetric Hamiltonian Hy,
3N 5 17
p] w
Hy(p,q) = 2_+ U(q1, 92, q3n) E
La2m
J=1 0
N —>
_ |pl|2 1 N - = >
Hy = om T2 u(rij), rj = |7 -7, r=y2), D= ®upPyPz) 1
i=1 j#i 0.5 1
* Homogeneous and isotropic matter: gases and liquids r/rm

1 _ 10
* ZN(T»N)=mfda)e ﬁHN(P,q)zmM_IYV
o Qy = [ dN# e PUGLT2TN)

configurational partition function: contains all the information about the particle positions
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Correlation functions

Mean density of particles is uniform for a trans/ational and isotropic system

dr o~
\

N
N
=1

Density correlation of pairs of particles separated by 7 — 7'

N N
(n(F)n(7") 225(F—n)5(r —7)) = 67 -7

p?g(@ —7") + ps(T —7"),
= p?g(IF =7']) = p*g(r)



Average properties

Average energy

3N N
(F) = -k + %f d7 u(r)g(r)

Particle number fluctuations
(AN?) = (N) + (N)pJ d7 [g(r) — 1]

Virial theorem

2(K) = —<2Fk-ﬁk

k

Np . .,
— 3NkT = 7f drr? u'(r) g(r) + 3PV

P = p[kT—% fd?ru’(r)g(r)]



Mean-field approximation: van der Waals system

In the mean field approximation, we assume that all particles experience
the same effective potential field

N

U(ry, 1y, ,Ty) = Z 2 u(ry) = Z u =
I i#j =1
Self-consistent equation
_ Na
u = <TN> —fdru(r)g(r)——7, a>0
Canonical partition functbon
Qv N
Zy = N1ASN Qv = (V. — Nb)Ve Npu

Helmholtz free energy  Fy = —kT In(Zy)

)+1] NKT1 (1 Nb) N a
" v %

Fy = —NkT lln (NAB T

p— kT N a N2
B V—-Nb KkTV?

Equation of state

Fys4130, 2019
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Liguid-gas phase transitions
e Van der Waals equation of state for fluids

NkT aN?
V—-Nb V?

* Abrupt phase transition is represented by the phase coexistance boundary
Pig (Tig ) inthe P-T phase diagram
* First order derivaties of the thermodynamic potential are discontinuous: entropy and
volume

* Clausius Clapeyron relation: How the pressure depends on the temperature on the
vaporisation/condensation phase boundary

* Phase transition from liquid to vapor at a constant Gibbs free energy G(P, T, N)

* There is a unique critical point (T., P., V) at which the phase transition turns
critical

* First order derivaties of the thermodynamic potential are continuous, but the second order
derivaties, like heat capacity, susceptibility, are power-law divergent neat the critical point

» Critical phase transitions are robust to microscopic details and exhibit universal scaling
properties, e.g. critical scaling exponents

Fys4130, 2019
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Abrupt phase transition

F
S @t
' heat
. L=T AS
Liquid : Gas
™ T

http://www.iitg.ac.in/santra/course_files/ph704/critical_ph.pdf

(b) S=—(9F/dT),

Fys4130, 2019

Metastable
G States

Volume
\" discontinuity
\ /

Gas ' Liquid
R —

P* p
(d) V =(dG/oP),

27



Critical phase transition

Liquid

No Latent
i heat

! Gas
T, T
(b) S =—(9F/dT),

http://www.iitg.ac.in/santra/course_files/ph704/critical_ph.pdf

.

Gas : Liquid
Pc P
(©)

V No volume
@nﬁnuity

Gas |\ Liquid

PP
(d) V =(9G/oP);

Fys4130, 2019
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Module IV: Ideal quantum gases

Blackbody radiation: Photon gas

Debye model: phonon gas

ldeal Bose gas: Bose Einstein condensation

|deal Fermi gas: Degenerate Fermi gases



l[deal quantum gas

Consider a system of N = Zj n; fre. quantum particles with number n; of particles in each energy state ¢;
Fermions: n; = 0,1
Bosons: n; =0,1,2,-

Grand-canonical partition function:

Unconditioned sum weighted by the Gibbs factor over all microstates with {n;} partition of particles between the energy levels {€;},

z -BXjej—mmj — HZ —B(ej-m)n;

{n;}
Grand-canonical partition function:

Lo |
o —
e

1 +1 ( top sign: fermions
() {

Lre~Ble) bottom sign: bosons

Landau free energy: Q(T,V,u) = —PV = —kT log=

O = $kTZ log ll + e'ﬁ(ef'“)]



Thermodynamics of ideal quantum gases

Pressure P(T, u)
PV = +kT[ deD(€) log(1 + e‘ﬁ(e_“)) (1)

Equation for the average number of particles provides the relationship between the density
p and chemical potential u:

1
(NYT,V, 1) = [ deD(€) 55— = [ de D()(n). (2)

Average energy:

(EXNT,V,u) = [ deD(e) = | de D(€){n).e (3)

eﬁ(e—ﬂ) + 1

For systems with non-zero u, we use Eq. (2) as the equation that determines u(p) and eliminate the u
dependence in Egs. (1) and (3), so that we can find the equation of state P(T, p) and the energy E(T, p)



Photon gas: uncountable photons u = 0

Grand-canonical partition function:
_ 1
== 1_[ 1 — e~ Bhck
1

Landau potential:

Bhc
Q(T,V) = =PV = kT z In(1 — e Ak) = kT [ dn D(n) In(1 - e_T")
n

Density of states

D(n)dn = 2x4nn?dn number of modes with quantum number between n and n+dn
D(n)dn = D, (k)dk = D, (w)dw = D.(€)e

v % v
C D) = LI, DY) = @, Dee) = e
Pressure: PV = —kT [ deD(¢) log(l — e‘ﬁe)
Average number of particles: (N) = [ de D(e){n). = [ deD(e) !

eBe—1
€
eBe—1

Average energy: (E) = [ de D(e){n).€ = [ deD(e)




Planck distribution:

Spectral energy distribution of a photon gas
Average energy density of a photon gas: 2

(EX(T,V) B 1fd D,(w)hw
v v YRR

T4-

h joo w3 mlk*

d =
n2c3 ), “ePho — 1~ 1503R3

Energy per unit volume at a given frequency w

<E7> = [ dw€E(w, T)

(1)3

€w,T) = m2c3 efrw — 1
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Phonon gas: Debye model gmgmémm?@é
Atoms vibrate with different frequencies and a linear dispersion ] ;mm ; (
w = kv, where v is the sound wave in the solid 3 S
* Density of elastic modes is analogous to the density of states for photons 5 % % %
| ST TG TN

(in the long-wavelength approximation, continuum elastic medium)

LV wdk |V N
Dw(a))—32n_2v2dw— ﬁv—3, fOT' OS(L)S(UD
* Total number of modes: 3N normal modes (in 3D) for N atoms B T
wp V @wp R
3N = dwD(w) =3 dw w? aesssa
0 2n2v3 0 Ny
2 E 1
Debye frequency wp, = v (67TVN)3 - wp = Asz = v(6m?p)3, p =%
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Debye model: heat capacity of crystals

» Total average energy of phonons

@p hw @D , hw
U(T,V) =J;) da)D(a))eﬁhw—_1= 3k27‘[2173 ) dw w eﬁhw——l
* Heat capacity
ou %4 @D , (hw 2 ePhe
¢, (T =(—) — 3k d ( )
v(T) oT /)y 2m?v3 ), v kT) (ePhw —1)2 .
" _____Law of Dulong and Peti
Cy (T 9Nk T\ F Tp F yd xte* 1 :?I” ,"‘:pproaches
— o D — - . specific Dul -Petit
v(D) (TD) (T) ) jo lex = 1)? g | e at high temp
X 10
CV(T) ~ 3Nk, T >Tp J’ - Low temperature
10l T behavior matches
12 . T 3 i Debye model
CV(T)z?NkT[ (T—>, T<<TD 8 . . . . . ..
D P07 10 100 100 10
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o~

|deal Bose gas: Density of states in 3D '

* Energy levels for a particle in a box with periodic boundary conditions:

hz 2 h 2T 2 2 N .
€En = Zm( L) | | = _(T) n-, n= (nx, ny, le), Nyyz Integers

\ 4

2Tl >

« Quantum state of the particle is described by its wavefunction ; = e Z'*", which is determined by

n Z/
Number of available states of modes between nand n + dn in 3D .
D(n)dn = 4nn?dn

V m3/?% 1
D.(e)de = D(n)dn —>DE(6)=\/§7T2 73 €2

Average number of particles: (N) = [ deD_(¢) eﬁ(e_lﬂ)_l

Average energy: U= deD (€) I M) .

Pressure: PV = —ka deD.(€) ln[l — e‘ﬁ(f—ﬂ)]
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|deal Bose gas

At a given temperature T, density p and chemical potential u are related by the following equation

1
X2
1

1 2 (©
T,u)=— A‘3T—j
P = g + AT =) dr

p(T, 1) = po(T, 1) + pex (T, 1), 2= eFH
Critical temperature for Bose Einstein condensation:

2

Determined by the density of the bose gas when u = O: T.(p) = 2:mk ((

e T<T c- Density is a mixture of condensed (dominant) and normal gas
P =po(T) + pex(T) = A3(T){(3/2)
* T > T,: Density is dominated by that of the normal gas

pP(T, 1) = pex(T, 1) = A‘?’(T)g% (A)

This equation determines the chemical potential u(T, p)
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Bose-Einstein condensate T <T, (A=1, u=20)

P =pPo(T)+ pex(T) = A_B(Tc)((?’/z)

1.5

—pylp
—F ex/p

0.5-

A macroscopic fraction of particles condense into the ground state with the zero momentum

* Chemical potential u = 0 remains zero for all temperatures below T .

* Excess density depends only on temperature and actually decreases with decreasing temperature

* Ground state density becomes non-zero and increases with decreasing temperature
Po

Po_ _Pex(D) _ A (T) _
p p A3 (T)

3/2

- (5)
T,

Pressure becomes independent of density
P 1

S xq
o = 70 9s/2(D) = P(T) ~ T Zee
Average kinetic energy U = %NkT p‘lA‘3(T)gS/2 ) = 1 2
3 T
U =—=NkT (ng%&) T<T 05
2 T, ¢ (i) | i |
2 %5

T/T
c

T/T.



|deal Fermi gases: Density of states in 3D

2L

e W, (r) =eL"" 1-particle wave function

- -.b - -
=gy n j+n, K

N R

* Each fermion (i.e. electron) has a spin moment = +

R n

Y

. . . . K2 (2m)\2
* Energy levels a fermion in a box V = L3 with periodic boundary conditions: €,, = %(Tn) n?,

Number of available states between a mode with n between n and n + dn: D(n)dn = 2x4nn?dn

Z:=2><f dn 4nn? = [ dn D(n)

n

Density of states corresponding to energy e:

v m3/2 1
V2n? A3 €

D(€) = D(n)j—’; > D(e) = 2

The difference with respect to the density of states of bosons is the spin degeneracy of the energy levels (hence the extra factor of 2).
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Fermi distribution at T=0 K fe)

fle) = eBle-w1q T—0 0, e>u

er = U Fermi energy level below which all states are occupied

1 {1,6<,u

2 2
Determined by the gas density €x(p) = j—m (3m%p)s3

1 2m\3/?% 3
PlEr) = 32 (hZ) €
Energy
(E)o V2m®? er 3 1 2m\®? 2
= J de ez = ( ) €2
v w2 h3 ), 5m2 \ h2 d
Exclusion pressure
h? 5 2
Po = 157m%m? (3m7p)3




Denenerate ideal Fermigas T < T

The Fermi temperature is most often much larges than the gas temperature

Therefore, even though the fermi gas is at finite temperature, it behaves as if it was a near zero temperature whenT < Tg

Sommerfeld expansion: kﬂ—T K1:

" 312

3
1 (2m)2 3/2

h3

(E)

B ) T (kT)2 N
K=er{* 712 &,

|4

3 2
1 2m)z 4, 52 (kT
"tz r \1tple) T

C —1(N) 2kT
Ve

Fys4130, 2019

1+n2<kT)+ B 1(
) v) PR

fle)

-fE)




Equation of state for quantum gases: high T
7
Pfermions = kTP (1 + 2 2A ,0)

s
Phosons = KTp (1 —2 2\ ,0)
Nonzero second virial coeft. B,(T) + 0

Bosons: B,(T) < 0 statistical attraction

Fermions: B,(T) > 0 statistical repulsion




Module V: Magnetism

Paramagnetism

Ferromagnetism and Ising model

Weiss mean field theory

Ising phase transition



Ising model for ferromagnets

A system of N spins s; = +1 on a periodic lattice and in a uniform
magnetic field B. Spins interact with their nearest neighbor on the lattice

Hy = —]z z SiSj — ZSiB' (up=1)
i j= [

nn.of i

> ] > 0 is the coupling constant, such that the energy is minimized when

neighboring spins point in the same direction

> Summation over the nearest neighbors (n.n.) j atoms that are coupled to the ith

atom on a crystal lattice (short hand notation used sometime = (ij))

» The form of the spin-spin interaction as —Js;s; originates the Coulomb interactions

between the electrons (spin carriers); magnetic dipole interactions are too weak.




Ising model in 1D

Periodic boundary conditions sy = s,
Partition function for N spins: Transfer matrix
Zy = Z e PHNWSH) = Tr(TV) = AV + A = AY, for N » 1
{si}
- (el?(]+B) 0B )
o~Bl  oBU-B)

Gibbs free energy Gy = —kT In(Zy)

Mean magnetization M(T,B) = — (_aGN(T’B))
T

dB
Any themal fluctuation destroys the net magnetization in the limit of zero applied field
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1D Ising model: No phase transition

At any nonzero temperature, it is energetically favorable to create
defects (kinks) due to thermal fluctuations

Change in energy for flipping a spin (kink in the ordered state)
U, = —NJ (order), U, =—(N—2)] + 2] (with a kink) - AU = 4]
Change in entropy for flipping a spin anywhere in the 1D chain (N sites)
AS = klogN

The spin flipping due to thermal fluctuations is favored when it lowers the Helmholtz free energy

AF =AU —TAS <0—- J—kTlogN <0

This is always satisfied at any T > 0, hence the spin order is spontaneously broken by
kinks due thermal fluctuations.



Ising model in d>1: Critical phase transitions

T<TC T>TC

Critical phase transition occurs at a unique point in the B — T diagram: (B., T,)
Q: How do we theoretically predict this critical point and the behavior near it?

A: Mean-field approximation, Landau field theorF\(/Jﬁg%malization group techniques



Weiss mean-field theory

S,
z=2d
HNZ_]ZSiSj_zSiBZ_ZSi Ji z S]+B 5,9 > Os,
(ij) i i j=n.n.(i)
* Replace the neighboring spin s; by the mean + fluctuations O 3 ’\
si=m+ (s; —m) =m+§s; J >og zjm

» Mean-field approxitimation: Ignore the effect of fluctations

H = —),;5iBess, where By = B + z/m
z is the coordination number; z = 2d for a
square lattice (z = 4in 2D, z = 6 in 3D)

Self-consistent equation m = (s)

T
m = tanh [7m + ﬁB]
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Self-consistent equation
* Limitof B=0

_ h[z]m
m= tan KT

+ solved graphically by looking at the intersection points between
the diagonal curve and the tanh(x)

- e g
Critical temperature: T, ==~

- tanh [z m|
m= tan Tm

* ForT >T,, there is only one root at m = 0
« ForT < T,, there are three roots at m = 0, +m(T)

 The non-zero solutions depend on the temperature below T,
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Critical exponents for the magnetic phase transition

Mean-field universality class

Order parameter M(T,B=0)~ (T.—T)?, PBuyr= %
Critical isotherm M(T,,B) ~ |B|°, &yr =3
Susceptibility x(T,B=0)~|T.—=T|™Y, yyr=1
Heat capacity Cg(T,B=0)~|T,—T|™%, ayr=20
Exponent (2D [3D | Meanfield _
a 0 0.11 0
B 1/8 0.32 1/2
y 7/4 1.24 1
1) 15 4.90 3
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Mean field Ising universality class

Correspondence between magnetics and fluids

Volume, V' or density, p
Pressure, P

Gibbs free energy, G(P,T)

Mean magnetization, —M
Magnetic field, B
Gibbs free energy, G(B, T)

Compressibility, k7 = —%Z—Z Susceptibility, y = Z—IBW
ty, Co = T (2 o (%%
Heat capacity, Cp = —T (aTZ)p Heat capacity, Cg = —T (aTZ)B
T Density (Order parameter) p(T,P.) ~ (T. — TP, Bur = %
Critical isotherm V(P,T,) ~P% Syr=23
Compressibility kKr(T) ~ |T. = T|7Y, vyur =
Heat capacity Co(T) ~|T,—T|™% ayr =
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Correspondence between magnetics and fluids

p (pCSTC) H
/ 0 pt
T F
T
v vapor M TiTEY

2-phase I
2-phase 0 coexistence |
coexistence | | T

I I

I TC
liquid :

I

11l
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Module VI: Stochastic processes and nonequilibrium statistical mechanics

Central limit theorem

Random walk, diffusion

Poisson process

Brownian motion



Central limit theorem: Limit distribution of sums

Suppose we have a set of N independent, identically distributed (i.i.d.) variables x; drawn from
the same parent distribution p(x;) with

1. Zeromean [dxxp(x)={(x)=0

2. Finite variance [ dx x?p(x) = 0% < o

The sum of N variables X = Y, x; is also a stochastic quantity which, in the limit of N > 1, is
distributed according to the Gaussian distribution independent of the parent distributions p(x;)



Random walker pf_\/\

* For each state there are two options:
RW takes a leftjumpm +1 > m <
RW takes a right jumpm —1 - m ;

Particle stochastic dynamics
+1, with probability p

Mp+q = My + Ak, Xy = {—1,with probability q

Probability distribution function for Rsteps to the right after N steps Py (R) = R'(;’ViR)' pRqWV-B)  m=2R-N

Master equation for the evolution of Py(m)

P(mN+1) =pP(m—1,N)+ qP(m+ 1,N)

Diffusion equation: continuum time and space limit of the master equation

P(x,t)
OP(x,t) 0P (x,t) 0%P(x,t) (p — q)Ax Ax?
-y p—— p=—1 D=—
at 0x J0x?2 At 2At
( ) 1 _ (x—vt)?
P(x,t) = e 4Dt
VarDt
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Poisson stochastic process

Describes discrete and independent random events that occur at a fixed rate, 1

Two important examples of such Poisson processes: radioactive decay and death process in population

dynamics

Decay probability for one nucleus: q, = 1 — e *; Survival probability at time t p, = e *

This is equivalent to the probability that n = N nuclei survived the decay

N!
pf(1—p )N

P = T =1

Poisson distribution: N - «, and p; —» 0 with fixed Np, = u;
n

He  _
Put(n) =F€ He



Master equation for Poisson process

i) The probability for (n + 1) survivers at t is P(n + 1,t) and probability that one of them will decay is (n + 1)gap3;, hence this scenario gives a
contribution (n + 1)qa:piP(n + 1,t) .

ii) The probability that one out of (n) will decay is the binomial distribution ng,:p; . The probability for (n) survivers at t is P(n,t) and the

probability that one of them will decay is nga;p2;*, hence change in probability is proportional to —nqai; P (n, t).
P(n,t + At) = P(n,t) + (n + 1)qacpaP(n + 1,t) — nqapp; P(n, t)

Taylor expanding around t and taking the limit of At «< 1

0P(n,t
%:A(n+1)P(n+1,t)—/1nP(n, 6, n=1N D
—_p—AAL
Where qAAtt =1 eAt — A is a fixed decaying rate.

Solution of this master equation is obtain by the generating function G(s,t) = YN_,s"P(n,t), s< 1

N!

o PP =N, =X

Probability of have n surving nuclei at time t is P(n, t) =



Brownian motion and Langevin equation

« Random motion of particles suspended in a fluid. These are also called colloidal particles and are
much bigger in size than the fluid particles

The Brownian particle evolves by the Langevin equation. It is a generalization of the Newton’s law of motion
when the Brownian particle experiences a random force through the random collisions with the fluid
particles. In addition, there is a drag force because the fluid is viscous.

Langevin equation:

dv
_— = R
m— av + R(t)

(R(©) =0
(R(HR(t)) = 2akTé(t —t)

The amplitude of the random force is determined by the local equilibrium assumption: the mean kinetic
energy of the BM is the same the energy of the fluid particles (equal to the equipartition of energy)



Diffusion of the BM and Einstein’s relation

t K % Ballistic Regime: on short timescales, the Brownian (x(t)?) !
particles is advected by the fluid with a mean velocity 2t
determined by the kinetic energy of the fluid particles 08/
(x(t)*) = vtzhermal t?
06"
/ 2

Venermal = <x§t) ) = %Tfrom the equipartition of energy

04

t » = Diffusive Regime: on long timescales, the Brownian
parhcles diffuses like a random walker 02
(x(t)?) = 2Dt

) i i kT
Einstein’s relation D = —



