2019 FYS4130 Statistical Physics

Course Plan

https://www.uio.no/studier/emner/matnat/fys/FYS4130/v19/lec ture_plan.html

Important dates 02.04 Deadline Oblig1 (received 19.03) 01.05 Deadline Oblig2 (received 10.04) 04.06 Final exam (written)

No lectures: 26.03 and 27.03

Module I: Thermodynamics (review) and the statistical ensembles

ti. 15. jan.	Thermodynamics laws, entropy
on. 16. jan.	Thermodynamic potentials, response functions and Maxwell's relations, thermodynamic stability
ti. 22. jan.	Phase space, Liouville's theorem, statistical ensembles
on. 23. jan.	Free particles in microcanonical ensemble
ti. 29. jan.	Canonical, grand canonical, isobaric ensemble
on. 30. jan.	Summary and questions

Module II: Non-interacting particles, multiplicity function, partition function

Module III: Weakly-interacting particles and Van der Waals fluid

Module IV: Quantum gases

Module V: Statistical description of magnetism

Module V: Non-equilibrium statistical processes

Thermodynamics laws

Entropy

15.01.2019

<u>Thermodynamics—Theory of principle</u>

Physics of heat Q and work W and properties of matter that relate to Q and W

• *invention* and *trigger* of the Industrial Revolution (1800 \rightarrow ..)

<u>Thermodynamics—Theory of principle</u>

 Based on few empirically observed general properties elevated as <u>thermodynamic principles</u>

 1^{th} law \rightarrow conservation of energy

◆2th law → defines ENTROPY (S) and entropy changes in relation to heat and work exchanges

• These laws are UNIVERSALLY VALID

Thermodynamics: Definitions

Thermodynamic system:

- Systems: part of the Universe that we choose to study
- Surrounding/environment/reservoir: the rest of the Universe and much larger than the system
- Boundary: the surface separating the System from the Surrounding

How do we describe the system:

- A few macroscopic properties: pressure, temperature, volume, molar volume, ...
- Homogeneous or Heterogeneous
- State of the system: equilibrium or non-equilibrium
- Number of components: pure system or composite system

For a one-component (pure) system, all that is required is N (number of particles) and two other thermodynamic variables variables. All other properties then follow the **equation of state**.

$$P = f(N, V, T)$$

6

300

Phase diagrams:

Ideal gas:

PV = NkT

Where $k = 1.381 \times 10^{-23} \, JK^{-1}$ is the Boltzmann's constant

P = P(V, T, N)

Equation of state [

P = P(V,T)

van der Waals equation of state for real fluids:

$$P = \frac{NkT}{V - Nb} - \frac{aN^2}{V^2}$$

Where a is the strength of attractive forces between particles and b is the exclusion volume of each particle

Virial expansion (low density):

$$P = kT \sum_{n} \rho^{n} B_{n}(T)$$

With $B_n(T)$ the virial coefficients, and $B_1(T) = 1$

Phase diagrams:

Statistical mechanics – Constructive theory

Invented to *explain* the principles of thermodynamics based on the **atomistic** description of matter – kinetic theory of gases (1870 \rightarrow)

Thermodynamics:

By virtue of the 2nd law of thermodynamics, heat *always* flows *spontaneously* from hot to cold until the same *temperature* is reached

Statistical mechanics:

Most likely, heat flows spontaneously from hot to cold <u>because</u> the atoms of the hot system have more kinetic energy. Therefore there is a natural tendency that, by mutual collisions, «hot» atoms loose some of their energy while «cold» atoms gain some kinetic energy until everyone has *the same kinetic energy,* **on average**

Statistical mechanics – Constructive theory

Invented to *explain* the principles of thermodynamics based on the atomistic description of matter

Statistical mechanics – Constructive theory

Invented to *explain* the principles of thermodynamics based on the atomistic description of matter

Thermodynamic process: Sponteneous relaxation to **thermal equilibrium**

Sponteneous *heat diffusion* until the **equipartition of energy** is reached

<u>Thermodynamics--Statistical mechanics:</u> <u>Correspondence</u>

 «Atoms» := microscopic particles, neutral atoms, electrons, photons, phonons, ...

Thermodynamic system (T,P,V,N)	Ensemble of particle configurations at (T,P,V,N)
Equilibrium states and free energies	Partition functions and statistical ensembles
F(T, V, N)	$Z(T, V, N) = \sum_{\{i-config\}} e^{-\frac{H_i}{kT}}$

Correspondence: $F(T, V, N) = -kT \ln Z(T, V, N)$

First law of thermodynamics

First law of thermodynamics: Conservation of energy

Energy cannot be destroyed or created but only transformed. A system can exchange energy with its environment in the form of heat and work exchanges.

Energy of the Universe is conserved

$$dU_{system} = \delta Q - \delta W$$
, $dU_{surrounding} = -\delta Q + \delta W \Rightarrow dU_{universe} = dU_{system} + dU_{surrounding} = 0$

Heat and Work: process variable, path-dependent, "energies in transit" (cannot be stored, only exchanged)

Internal energy: state variable, depends only on the state and not how it gets there (can be stored)

Sign convention: $\delta W = P dV > 0$ when the volume of the system increases (Work done by the system to the surroundings)

Second Law of thermodynamics

Second law of thermodynamics

<u>Clausius inequality:</u> *Entropy change* must be larger or equal than the infinitesimal amount of heat exchanged at a given temperature T devided by that temperature

$$dS \ge \frac{\delta Q}{T}$$
$$[S] = \frac{Joule}{Kelvin}$$

 $dS = \frac{\delta Q_{rev}}{T}$ for a *reversible process*

Cyclic process:

$$\oint \frac{\delta Q}{\pi} \leq \mathbf{0}$$

Clausius inequality:

 $dS \geq \frac{\sigma}{\pi}$

Second law of thermodynamics

Clausius inequality for an isolated system Entropy tends to increase as the system sponteneously finds its equilibrium state

 $dS \ge 0$

Boltzmann's formula $S = k \ln \Omega$, $\Omega =$ multiplicity of a macrostate

An isolated system will spontaneously evolve towards the most likely equilibrium state, i.e. The macrostate with maximum multiplicity Ω .

Clausius inequality: $dS \ge \frac{\delta Q}{\epsilon}$ Entropy of the Universe: $dS \ge 0$ System is drawn towards the state with highest probability $\Omega_{final} \ge \Omega_{initial}$

Second law of thermodynamics: refrigirators

Cyclic process:

$$\oint \frac{\delta Q}{T} \leq \mathbf{0}$$

Clausis: It is impossible for any system to operate in <u>a cycle</u> that takes heat from a cold reservoir and transfer it to a hot reservoir without any work

2nd law:
$$\Delta S_{sys} + \Delta S_{res} \ge 0 \rightarrow \Delta S_{res} \ge 0$$
 $(\Delta S_{sys} = 0 \text{ for a cycle})$
 $\frac{Q_h}{T_h} - \frac{Q_c}{T_c} \ge 0 \rightarrow \frac{Q_h}{Q_c} \ge \frac{T_h}{T_c} \rightarrow Q_h > Q_c$
1st law: $\Delta U = -Q_h + Q_c + W = 0$
 $Q_h = Q_c + W$

Second law of thermodynamics: heat engines

Cyclic process:

$$\oint \frac{\delta Q}{T} \leq \mathbf{0}$$

Kelvin: It is impossible for any system to operate in <u>a cycle</u> that uses heat from a hot reservoir as work without also releasing some heat into a cold reservoir

2nd law:
$$\Delta S_{sys} + \Delta S_{res} \ge 0 \rightarrow \Delta S_{res} \ge 0$$

 $-\frac{Q_h}{T_h} + \frac{Q_c}{T_c} \ge 0 \rightarrow \frac{Q_c}{Q_h} \ge \frac{T_c}{T_h}$
1st law: $\Delta U = Q_h - Q_c - W = 0$

st law:
$$\Delta U = Q_h - Q_c - W = 0$$

 $Q_h = Q_c + W$

Thermodynamic inequality

$$TdS \ge \delta Q \to TdS \ge (dU + \delta W) \to$$

Principle of maximum work:

$$\delta W \le -(dU - TdS)$$

Work done by the system is maximum for a reversible process

Reversible process: **Thermodynamic identity** $dU = TdS - PdV \rightarrow \delta W_{max} = PdV$

Thermodynamic inequality $dU \leq TdS - PdV$

Entropy

- Thermodynamic identity can only determine entropy change
- Entropy of a state can be evaluate up to the entropy constant

$$dS = \frac{1}{T}dU + \frac{P}{T}dV$$

Example: Ideal gas entropy

Equipartition of energy (3D) $U = \frac{3}{2}NkT \rightarrow dU = \frac{3}{2}NkdT$ Equation of state: $PV = NkT \rightarrow P(V) = \frac{NkT}{V}$ $dS = \frac{3}{2}Nk\frac{dT}{T} + Nk\frac{dV}{V}$ $S - S_0 = \frac{3}{2}Nk\ln\left(\frac{T}{T_0}\right) + Nk\ln\left(\frac{V}{V_0}\right)$

 $S = N k \left[\frac{3}{2} \ln T + \ln V + \sigma_0\right], \ \sigma_0(h, m, k)$ determined only from statistical mechanics

Entropy

• Serious problem with the entropy obtained by integrating the thermodynamic identity is that it is **NOT EXPENSIVE**

$$S(U, V, N) = N k \left[\frac{3}{2} \ln\left(\frac{U}{N}\right) + \ln V + \sigma_0\right]$$
(1)
Using $U = \frac{3}{2} N k T$

• Extensitivity condition: homogeneous function (scale invariance) $\widetilde{U} = \frac{U}{N}, \widetilde{V} = \frac{V}{N} \to S(U, V, N) = N\widetilde{S}(\widetilde{U}, \widetilde{V}, 1)$

Entropy is an additive quantity just like energy and volume: *the entropy of N particles is the sum of the entropy of each particle*

But eq. (1) does not fulfill this condition!

$V_{initial} = V_A + V_B = 2V$ $N_{initial} = N_A + N_B = 2N$ N, V, UB: N, V, U

 $U_{initial} = U_A + U_B = 2U$

$$U_{final} = 2U$$

 $V_{final} = 2V$
 $N_{final} = 2N$

Entropy of mixing and Gibbs paradox: ΔS

• If the gas is the same on both sides of the wall

$$S_A + S_B = 2S_{initial}(U, V, N)$$
$$\Delta S = S_{final}(U, V, N) - 2S_{initial}(U, V, U)$$

$$\Delta S = 2kN \left[\ln (2V) + \frac{3}{2} \ln \left(\frac{2U}{2N} \right) + \sigma_0 \right] - 2kN \left[\ln V + \frac{3}{2} \ln \left(\frac{U}{N} \right) + \sigma_0 \right]$$
$$\Delta S = 2kN \ln 2 \neq 0!$$

(violate 2nd law of thermodynamics— the total system hasn't changed its equilibrium state -- and the extensivity property)

FIXED: Devide by $k \ln N!$ In Eq. (1), and its explanation lies in statistical mechanics!

Entropy of mixing: ΔS

• If the gas is **different (distinguishable)** on both sides of the wall

 $\Delta S_t = \Delta S_A + \Delta S_B$

Using Eq. (1) (suppose $U_A = U_B$)

 $\Delta S_t = kN \ln \frac{V_{A,final}}{V_{A,initial}} + kN \ln \frac{V_{B,final}}{V_{B,initial}}$

$$\Delta S_t = 2kN \ln 2$$

□ Effectively, the available volume increases upon mixing hence the number of configurations increases

 $N_A + N_B, V_A + V_B, U_A + U_B$