
Monte Carlo simulations
of the Ising model

Ws =
e��H

Z

Generated with prob. dist. W

P(s->s’) is the prob. that the MC machine goes from s to s’

(s and s’)configurations

So the detailed balance condition ensures
that the relative frequency of occurence of
the different spin configurations follows the
distribution W.

Monte Carlo simulations
• Start with a random spin configuration

• Equilibriation: Do Neq MC updates until the observables
(magnetization, energy etc.) cease to depend systematically on
Neq . Neq is typically 1000-100000 sweeps of the whole lattice.

• Measurement: Do Nmeas MC updates where the observables are
recorded and accumulated after each update. After Nmeas, divide
the accumulated results by Nmeas and record the result. Nmeas is
typically 1000-10000. Then repeat this Nbin times. This will
produce Nbin statistically independent results from which one
can calculate the total average and estimate the statistical
uncertainty based on their variations. Nbin is typically 10-100.

Detailed balance

• ? Algorithm!

• Common factors in W cancels out.

P (s! s0)

W (s)P (s! s0) = P (s0 ! s)W (s0)

Metropolis algorithm

• Metropolis algorithm:

W (s)P (s! s0) = P (s0 ! s)W (s0)

P (s! s0) = min(
W (s0)
W (s)

, 1)

Detailed balance and Metropolis

W (s)P (s! s0) = P (s0 ! s)W (s0)

P (s! s0) = min(
W (s0)
W (s)

, 1)

P (s0 ! s) = min

✓
W (s)

W (s0)
, 1

◆

W (s0) ·min

✓
W (s)

W (s0)
, 1

◆
W (s) ·min

✓
W (s0)

W (s)
, 1

◆
=

{Metropolis:

Detailed balance:

W (s0) < W (s) : l.h.s. = W (s0), r.h.s. = W (s0) X

W (s0) > W (s) : l.h.s. = W (s), r.h.s. = W (s) X

Swendsen-Wang algorithm
R.H.Swendsen, J.-S. Wang, PRL 58,86 (1987)

Z =
X

{�}

Y

l

e�J�l0�l1

Links between nearest neighbors

No magnetic field!

ll0 l1

l01

l00

l0

� = +1
� = �1

Swendsen-Wang algorithm
R.H.Swendsen, J.-S. Wang, PRL 58,86 (1987)

1. Assign “bonds” with prob p between aligned spins2. Flip all spins on clusters with probability 1/23. Remove bonds, and start over

� = +1
� = �1

Swendsen-Wang algorithm
R.H.Swendsen, J.-S. Wang, PRL 58,86 (1987)

Swendsen-Wang

Z =
X

{�}

Y

l

e�J�l0�l1

Introduce: Bond variables b that lives on links and takes values b=1 or b=0

� = +1
� = �1

b = 1

b = 0

not drawn

Swendsen-Wang
Z =

X

{�}

Y

l

e�J�l0�l1

=
X

{�}

X

{b}

Y

l

⇥
e�J��l0 ,�l1

(p�bl,1 + (1� p)�bl,0) + e��J
�
1� ��l0�l1

�
�bl,0

⇤

New weights: W (�) ! W (�, b)

Swendsen-Wang

pe�J

pe�J

(1� p)e�J
(1� p)e�J

e��J

e��J

W (�, b)Table of

=
X

{�}

X

{b}

Y

l

⇥
e�J��l0 ,�l1

(p�bl,1 + (1� p)�bl,0) + e��J
�
1� ��l0�l1

�
�bl,0

⇤
Z

Swendsen-Wang

On flipping all spins on a cluster, only spins on links with no
bonds change alignment with each other.

pe�J

pe�J

(1� p)e�J
(1� p)e�J

e��J

e��J (1� p)e�J
(1� p)e�J

pe�J
e��J

e��J

pe�J

Swendsen-Wang
Flipping one of the spins (both if b=1) gives new configurations:

Swendsen-Wang

P (� ! �0) = P (� ! �, b)P̃ (�, b ! �0, b)

W (�)P (� ! �0) = W (�0)P (�0 ! �)Detailed balance:

Split P into two stages, 1) assign bonds, 2) flip spins:

P̃ (�, b ! �0, b) =
1

2
Choose:

Then detailed balance is:

|{z} |{z}

W (�, b) W (�0, b)

W (�)P (� ! �, b) = W (�0)P (�0 ! �0, b)

Swendsen-Wang

pe�J

pe�J

(1� p)e�J
(1� p)e�J

e��J

e��J

W (�, b)

(1� p)e�J

(1� p)e�J

pe�J
e��J

e��J

pe�J

W (�0, b)

W (�, b) = W (�0, b) =) (1� p)e�J = e��J

p = 1� e�2�J

Wolff cluster algorithm
• A single-cluster variant of Swendsen-Wang. Can be implemented easily

using recursion.

• 1. Pick a site on random, label it the SITE

• 2. Flip the spin on SITE.

• 3. Consider each neighbor of SITE, one at a time.

• If the neighboring spin is antialigned with SITE spin, assign SITE to be
the neighboring spin with prob. p (same p as in SW). Goto 2.

• else if not moving SITE do next neighbor. When out of neighbors go
back to previous SITE and do the rest of the neighbors there. When
all neighbors on all sites visited have been considered, the update is
done.

U. Wolff, Phys. Lett. B 228, 379 (1989)

Wolff cluster algorithm

