Monte Carlo simulations
of the Ising model



The Monte Carlo idea

Task: Compute
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Number of terms is an exponential function of
system size.

Instead, do as in an experiment:

. Generated with prob. dist. W
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Monte Carlo idea:

Generate configurations distributed as W, and
replace the ensemble average by the “experimental”
average:

(0)=0



) P(s->s’) is the prob. that the MC machine goes from s to s’
e Detailed balance:

P(s — s')W(s) = W(s')P(s' — s)

e Consider a long string of measurements:
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e Pick out measurement samples obtained at several
distant places in the chain. For simplicity |lets
assume there are only two possible LN
resylts. Consider the next step in the chain: Number

of samples going from state s to s’ is

(s and s)

W(s')
W(s)

Ne.o=NgP(s —s")= N,P(s' — s)

while the number of samples going from s’ to s is:

Ng_ o= NgP(s — s)



The net flux from s to s’ is

Ne_sr — Ng_s -, (W(s") Ng
N =P =9 e N

In equilibrium:

4'\'?3 ’ W ( s )

N W(s)

So the detailed balance condition ensures
that the relative frequency of occurence of
the different spin configurations follows the

distribution W.



Ergodicity

e Detailed balance is not enough to ensure O = (O)

e Need also: finite probability that any allowed
configuration is measured.

e In “real life": N = finite.
Motion in phase space should be sufficiently fast

e Avoid slowing down in a corner of phase space.



Monte Carlo simulations

e Start with a random spin configuration

e Equilibriation: Do Negs MC updates until the observables
(magnetization, energy etc.) cease to depend systematically on
Neq . Neq is typically 1000-100000 sweeps of the whole lattice.

 Measurement: Do Nmeas MC updates where the observables are
recorded and accumulated after each update. After Nmeas, divide
the accumulated results by Nmeas and record the result. Nmeas IS
typically 1000-10000. Then repeat this Nbin times. This will
produce Nbin statistically independent results from which one
can calculate the total average and estimate the statistical
uncertainty based on their variations. Noin IS typically 10-100.



Detailed balance

(s — s Algorithm!

e Common factors in YWV cancels out.



Metropolis algorithm

W (s)P(s — s') = P(s" — s)W(s')

W(s")
W (s)
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® Metropolis algorithm: P(s — S/) = min(
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Detailed balance and Metropolis

Detailed balance: W (s)P(s — s') = P(s' — s)W(s')
W(s’)
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Metropolis: {

P(s' — s) = min (W(s’) 1

W (s) - min (VVVV((SS/)) | 1) — W(s') - min (VVVV((;)) | 1)




Ising model, Metropolis algorithm

e |sing model:
H = —JZ gi0;
(i7)

e Metropolis algorithm (Metropolis et al. J.Chem.
Phys. 21, 1087 (53)):
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— Given a configuration, flip an arbitrary spin.
— If new config. is lower in energy, accept it.

if higher accept it with a probability e—B(E'-E)
— repeat
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e Detailed balance:

P(s — s') = min (1, W(s')/W(s))



swendsen-Wang algorithm

R.H.Swendsen, J.-S. Wang, PRL 58,86 (1987)
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swendsen-Wang algorithm

R.H.Swendsen, J.-S. Wang, PRL 58,86 (1987)
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swendsen-Wang algorithm

R.H.Swendsen, J.-S. Wang, PRL 58,86 (1987)
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Swendsen-Wang
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Introduce: Bond variables b that lives on links and takes values b=1 or b=0



Swendsen-Wang
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New weights: W (o) — W(o,b)
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Swendsen-Wang

On flipping all spins on a cluster, only spins on links with no
bonds change alignment with each other.



Swendsen-Wang

Flipping one of the spins (both if b=1) gives new configurations:
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Swendsen-Wang

Detailed balance: W (o)P(oc — ¢') = W(d')P(c" — o)

Split P into two stages, 1) assign bonds, 2) flip spins:

~

P(c —o¢')=P(c = o,b)P(c,b— o', b)
1

Choose: P(o,b— o’,b) = >

Then detailed balance is:
W (o)P(oc — o,b) = W(c")P(c" — o', b)




Swendsen-Wang
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Swendsen-Wang algorithm

- 66 O°

e Swendsen-Wang algorithm (R.H. Swendsen J.-S.
Wang PRL, 58,86 (87)):

— Given a spin config. Go thru all links between
spins and assign bonds with prob. p:
+ Equal spins: p=1— e—25J
+ Different spins: p = 0.

— Flip resulting clusters with prob. 1/2.

— Measure observables

— Erase bonds and repeat.
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Wolff cluster algorithm

U. Wolff, Phys. Lett. B 228, 379 (198

® A single-cluster variant of Swendsen-Wang. Can be implemented easily
using recursion.

® |.Pick a site on random, label it the SITE
® 2. Flip the spin on SITE.
® 3. Consider each neighbor of SITE, one at a time.

® |f the neighboring spin is antialigned with SITE spin, assign SITE to be
the neighboring spin with prob. p (same p as in SW). Goto 2.

® else if not moving SITE do next neighbor. When out of neighbors go
back to previous SITE and do the rest of the neighbors there.When
all neighbors on all sites visited have been considered, the update is
done.



Wolff cluster algorithm




