Ising model

Model proposed by Wilhelm Lenz as a model of magnetism in 1920.

XYZ-model

$$
\begin{aligned}
H=\sum_{\langle i j\rangle}\left(J_{x} \sigma_{i}^{x} \sigma_{j}^{x}+J_{y} \sigma_{i}^{y} \sigma_{j}^{y}+J_{z} \sigma_{i}^{z} \sigma_{j}^{z}\right) \\
\sigma^{x}, \sigma^{y}, \sigma^{z} \quad \text { Pauli matrices }
\end{aligned}
$$

XXZ-model: $\quad J_{x}=J_{y}, J_{z}$
Heisenberg model: $J_{x}=J_{y}=J_{z}$
XY model: $\quad J_{x}=J_{y}, J_{z}=0$ Ising model: $\quad J_{x}=J_{y}=0, J_{z}$

Ising model exact solutions

- 1D: Ernst Ising solved the 1D model exactly in 1924, but no phase transition...a disappointing conclusion.
- 2D: Lars Onsager, solved the 2D Ising model exactly in 1944. There is a phase transition! A true "tour de force" in theoretical physics. Very impressive, he even introduced quaternions to solve it.
- 3D: Ising model has not yet been solved exactly.

Ising chain (1D) h=0

$$
H=-J \sum_{i=1}^{N-1} \sigma_{i} \sigma_{i+1}
$$

Open boundary conditions

New variables:

$$
\begin{array}{ll}
\tau_{1}=\sigma_{1} & \tau_{i}=\sigma_{i-1} \sigma_{i} \quad H=-J \sum_{i=2}^{N} \tau_{i}
\end{array}
$$

$$
Z=\sum_{\sigma} e^{-\beta H}=\sum_{\tau} e^{-\beta H}
$$

$$
Z=\sum_{\tau_{1}} \prod_{i=2}^{N}\left(\sum_{\tau_{i}} e^{\beta J \tau_{i}}\right)=2(2 \cosh (\beta J))^{N-1}
$$

Ising chain (1D) h=0

$$
\begin{aligned}
Z & =2(2 \cosh \beta J)^{N-1} \\
-\beta F & =\ln 2+(N-1) \ln [2 \cosh (\beta J)] \\
U & =\frac{\partial(\beta F)}{\partial \beta}=-(N-1) J \tanh (\beta J) \\
c & =\frac{1}{N} \frac{\partial U}{\partial T}=k \beta^{2} J^{2}\left(1-\frac{1}{N}\right) \frac{1}{\cosh ^{2}(\beta J)}
\end{aligned}
$$

Ising chain (1D) h=0

$$
c=\frac{1}{N} \frac{\partial U}{\partial T}=k \beta^{2} J^{2}\left(1-\frac{1}{N}\right) \frac{1}{\cosh ^{2}(\beta J)}
$$

Transfer matrices Using chain

Periodic boundary conditions, write H in a symmetric way:

$$
\begin{aligned}
H & =-J \sum_{i=1}^{N} \sigma_{i} \sigma_{i+1}-\frac{h}{2} \sum_{i=1}^{N}\left(\sigma_{i}+\sigma_{i+1}\right) \\
Z & =\sum_{\{\sigma\}} e^{-\beta\left[-J \sum_{i=1}^{N} \sigma_{i} \sigma_{i+1}-\frac{h}{2} \sum_{i=1}^{N}\left(\sigma_{i}+\sigma_{i+1}\right)\right]} \\
& =\sum_{\{\sigma\}} \prod_{i=1}^{N} e^{\left[\beta J \sigma_{i} \sigma_{i+1}+\frac{\beta h}{2}\left(\sigma_{i}+\sigma_{i+1}\right)\right]} \\
& =\sum_{\{\sigma\}} \prod_{i=1}^{N} T_{\sigma_{i}, \sigma_{i+1}}
\end{aligned}
$$

Transfer matrices

$$
\begin{aligned}
& T_{\sigma_{i}, \sigma_{i+1}}=e^{\beta J \sigma_{i} \sigma_{i+1}+\frac{\beta h}{2}\left(\sigma_{i}+\sigma_{i+1}\right)} \\
& T=\left(\begin{array}{cc}
e^{\beta J-\beta h} & e^{-\beta J} \\
e^{\beta J} & e^{\beta J+\beta h}
\end{array}\right) \quad{ }^{-\sigma_{i+1}+} \begin{array}{l}
\sigma_{i}-\left(\begin{array}{cc}
-- & -+ \\
+- & ++
\end{array}\right) \\
Z=\sum_{\{\sigma\}} T_{\sigma_{1}, \sigma_{2}} T_{\sigma_{2}, \sigma_{3}} \ldots T_{\sigma_{N}, \sigma_{1}} \\
\quad \mathbf{z}=\text { Trace (A product of transfer matrices) }
\end{array}
\end{aligned}
$$

$$
Z=\operatorname{Tr}\left(T^{N}\right)
$$

Transfer matrices

Diagonalize the transfer matrix: $\quad T=R^{-1} D R$

$$
D=\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

$$
Z=\operatorname{Tr}\left(T^{N}\right)=\operatorname{Tr}\left(R^{-1} D R R^{-1} D R \ldots D R\right)
$$

$$
=\operatorname{Tr}\left(D^{N}\right)=\lambda_{1}^{N}+\lambda_{2}^{N}
$$

Let $\lambda_{1}>\lambda_{2} \quad$ then for large- \mathbf{N} :

$$
Z=\lambda_{1}^{N}\left(1+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{N}\right) \approx \lambda_{1}^{N}
$$

Transfer matrices

Ising chain (exercise):

$$
\lambda_{1}=e^{\beta J} \cosh \beta h+\sqrt{e^{2 \beta J} \cosh ^{2}(\beta h)-2 \sinh 2 \beta J}
$$

$$
\frac{F}{N}=-k T \ln \left(e^{\beta J} \cosh (\beta h)+\sqrt{e^{2 \beta J} \cosh ^{2}(\beta h)-2 \sinh (2 \beta J)}\right)
$$

Exercise: Show that the above reduces to
Analytic: No phase transitions!

$$
\frac{F}{N}=-k T \ln (2 \cosh (\beta J))
$$

for $h=0$

Magnetization

$$
\begin{aligned}
m & =\frac{1}{N}\left\langle\sigma_{j}\right\rangle=\frac{1}{\beta N} \frac{\partial}{\partial h} \frac{1}{Z} \sum_{\{\sigma\}} e^{\beta J \sum_{i} \sigma_{i} \sigma_{i+1}+\beta h \sum_{i} \sigma_{i}} \\
& =\frac{1}{\beta N} \frac{\partial \ln Z}{\partial h}=-\frac{1}{N} \frac{\partial F}{\partial h}
\end{aligned}
$$

Magnetic susceptibility

Magnetic susceptibility:

$$
\chi=\frac{\partial m}{\partial h}=\frac{1}{\beta N} \frac{\partial^{2} \ln Z}{\partial^{2} h}
$$

The peak becomes narrower and moves to lower T as his reduced. No phase transition.

