
Ising model

Model proposed by Wilhelm Lenz as a model of 
magnetism in 1920. 
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XYZ-model

XXZ-model: 
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Jx = Jy = JzHeisenberg model: 

XY model: Jx = Jy, Jz = 0

Ising model: Jx = Jy = 0, Jz

�x,�y,�z Pauli matrices 



• 1D: Ernst Ising solved the 1D model exactly in 1924, but 
no phase transition…a disappointing conclusion.


• 2D: Lars Onsager, solved the 2D Ising model exactly in 
1944. There is a phase transition! A true “tour de force” in 
theoretical physics. Very impressive, he even introduced 
quaternions to solve it.


• 3D: Ising model has not yet been solved exactly.  

Ising model 
 exact solutions 



Ising chain (1D) h=0
H = �J
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Ising chain (1D) h=0
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Ising chain (1D) h=0
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Transfer matrices 
Ising chain
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Transfer matrices

Z = Trace (A product of transfer matrices)
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Transfer matrices
Diagonalize the transfer matrix: T = R�1DR
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Transfer matrices
Ising chain (exercise): 
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Exercise: Show that the above reduces to 

F

N
= �kT ln (2 cosh (�J))

for h=0

Analytic: No phase transitions!
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Magnetization
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Magnetic susceptibility
Magnetic susceptibility:
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The peak becomes narrower and moves to lower T as h is reduced. No 
phase transition.
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