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Chapter 1

Newton’s law of universal
gravitation

1.1 The force law of gravitation

Figure 1.1: Newton’s law of universal gravitation states that the force between
two masses is attractive, acts along the line joining them and is inversely pro-
portional to the distance separating the masses.

., M M

Let V be the potential energy of m (see figure 1.1). Then

= ov
F=-VV(), F=- 1.2
(" o (12)
For a spherical mass distribution: V(7) = —mG%, with zero potential

infinitely far from the center of M. Newton’s law of gravitation is valid for
“small” velocities, i.e. velocities much smaller than the velocity of light and
“weak” fields. Weak fields are fields in which the gravitational potential energy
of a test particle is very small compared to its rest mass energy. (Note that
here one is interested only in the absolute values of the above quantities and

not their sign).

M GM
mG— < me? = r> — (1.3)
T c

1
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The Schwarzschild radius for an object of mass M is Ry = Q%M . Far

outside the Schwarzschild radius we have a weak field. To get a feeling for
magnitudes consider that Ry = 1 c¢cm for the Earth which is to be compared
with Rp = 6400 km. That is, the gravitational field at the Earth’s surface can
be said to be weak! This explains, in part, the success of the Newtonian theory.

1.2 Newton’s law of gravitation in its local form

Let P be a point in the field (see figure 1.2) with position vector ¥ = z'¢; and
let the gravitating point source be at r/ = 2z &,. Newton’s law of gravitation
for a continuous distribution of mass is

— 7”|3 (1.4)

See figure (1.2) for symbol definitions.

Figure 1.2: Newton’s law of gravitation in its local form.



1.2 Newton’s law of gravitation in its local form

Let’s consider equation (1.4) term by term.
) !
|77_7:;| Za$i [(SL’J —l‘j/)(l‘j —{L‘j/)] 1/2
) . y ~1/2
=éim (@ — 27w~ ay)
-

N -1 8333 /
i 225 = 2y) 5~ ka—-xk)(xk—-ww)

(27 — :Uj,)(sij (1.5)
[(ah — &) (g — ape)]?
| (le _ .Q?i/)

(@ — 2 (25 —

—3/2

)]3/2

1

-
— !
=
/

;
=

—-T

Now equations (1.4) and (1.5) together =
o
V(F) = —mG/ LT)_.d‘gr’ (1.6)
77

Gravitational potential at point P:

= Vo¢(r) = G/p(;)%d‘gr' (1.7)

The above equation simplifies considerably if we calculate the divergence in the
integrand.

71 V© o S 1
Ve e T VT
_ 3 (_,_7:;) 3(_’—7”,)
|7 — 7|3 |7 — 7|5 (1.8)
3 3
S F=rR TP
=0 V r#r

We conclude that the Newtonian gravitational potential at a point in a gravi-
tational field outside a mass distribution satisfies Laplace’s equation

Vi =0 (1.9)

Note that “V”
operates on 7
only!
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Digression 1.2.1 (Dirac’s delta function)

The Dirac delta function has the following properties:

1. 6(F—1)=0 YV 77

2. [o6(F— ﬁ)d?’r/ — 1 when 7 = 1/ is contained in the integration domain. The
integral is identically zero otherwise.

3. [ f(r)o(F —r")d* = f(7)

A calculation of the integral [ V- \FF—_}Z?’ d®r" which is valid also in the case where

the field point is inside the mass distribution is obtained through the use of
Gauss’ integral theorem:

/V-A'd3 = j{fi'-dsj (1.10)
\'

S

where s is the boundary of v (s = dv is an area).

Definition 1.2.1 (Solid angle)

d /
0= 2L (1.11)
|7 —r'|2
where ds’| is the projection of the area ds’ normal to the line of sight. ds' | is the

component vector of ds’ along the line of sight which is equal to the normal vector
of ds'| (see figure (1.3)).

Now, let’s apply Gauss’ integral theorem.

—

> —»__; . dS/
[Vt = gy = = o
|7 — ) 7] 7 — ]
S S S

v

So that,

(1.13)

/ P—r 3 4m if P is inside the mass distribution,
——d’r
| 0  if P is outside the mass distribution.

F—r'3
The above relation is written concisely in terms of the Dirac delta function:

r—r! -



1.3 Tidal Forces

1
<l

<

dS/J_ =

=
By

ds’ normal to bounding surface

Figure 1.3: The solid angle df2 is defined such that the surface of a sphere
subtends 47 at the center

We now have

>
V2g(7) = G/ ) 4; ;|3d3r’

= G/ (r)ax (7 — 1) d>r
= 47 Gp(7F)

(1.15)

Newton’s theory of gravitation can now be expressed very succinctly indeed!

1. Mass generates gravitational potential according to

V2¢ = 4rGp (1.16)

2. Gravitational potential generates motion according to

g=-Vo (1.17)

where ¢ is the field strength of the gravitational field.

1.3 Tidal Forces

Tidal force is difference of gravitational force on two neighboring particles in a
gravitational field. The tidal force is due to the inhomogeneity of a gravitational
field.

In figure 1.4 two points have a separation vector 5 . The position vectors of 1
and 2 are 7 and 7+ (, respectively, where \f\ < |F]. The gravitational forces on
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Figure 1.4: Tidal Forces

a mass m at 1 and at 2 are F/(7) and F(7+ (). By means of a Taylor expansion
to lowest order in |(| we get for the i-component of the tidal force

=R 0 - R0 =6 (52 (119
The corresponding vector equation is
f=(C V). (1.19)
Using that B
F=—-mvVeg, (1.20)

the tidal force may be expressed in terms of the gravitational potential according
to
f=-m(C-V)Veo. (1.21)

It follows that in a local Cartesian coordinate system, the i-coordinate of the
relative acceleration of the particles is

2. 2
dc’:—< ¢ >ﬁgj. (1.22)

dt? 0zt0zI

Let us look at a few simple examples. In the first one f has the same direction
as ¢g. Consider a small Cartesian coordinate system at a distance R from a mass
M (see figure 1.5). If we place a particle of mass m at a point (0,0, +2z), it will,
according to eq. (1.1) be acted upon by a force

GM
F, = —m— 1.2
(+2) m(R+z)2 (1.23)
while an identical particle at the origin will be acted upon by the force
GM
F.(0) =—m . (1.24)



1.3 Tidal Forces

z
m
F(+2)
\ / v
v R0)
R

M

Figure 1.5: A small Cartesian coordinate system at a distance R from a mass
M.

If this little coordinate system is falling freely towards M, an observer at

the origin will say that the particle at (0,0,+z) is acted upon by a force
GM
f:=F.(2) — F,(0) = 2sz (1.25)

directed away from the origin, along the positive z-axis. We have assumed
z < R. This is the tidal force.

In the same way particles at the points (+x,0,0) and (0, +y, 0) are attracted
towards the origin by tidal forces

M
GM

Egs. (1.25)-(1.27) have among others the following consequence: If an elastic,
circular ring is falling freely in the Earth’s gravitational field, as shown in figure
1.6, it will be stretched in the vertical direction and compressed in the horizontal
direction.

In general, tidal forces cause changes of shape.

The tidal forces from the Sun and the Moon cause flood and ebb on the
Earth. Let us consider the effect due to the Moon. We then let M be the mass
of the Moon, and choose a coordinate system with origin at the Earth’s center.
The tidal force per unit mass at a point is the negative gradient of the tidal
potential

GM 1 1 GM
o(r) = “ R <z2 - 53:2 - §y2> =553 r2(3cos? 0 — 1), (1.28)
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Figure 1.6: An elastic, circular ring falling freely in the Earth’s gravitational
field

where we have introduced spherical coordinates, z = r cos @, z2 + 3% = r2sin? 6,
R is the distance between the Earth and the Moon, and the radius r of the
spherical coordinate is equal to the radius of the Earth.

The potential at a height h above the surface of the Earth has one term,
mgh, due to the attraction of the Earth and one given by eq. (1.28), due to the
attraction of the Moon. Thus,

GM
O(r) = gh — 2—R3r2(3 cos?f — 1). (1.29)
At equilibrium, the surface of the Earth will be an equipotential surface,
given by © = constant. The height of the water at flood, # = 0 or 8 = 7, is
therefore

GM /r\2
hood = ho + —— (—) , 1.30
flood 0+ gR R ( )
where hg is an unknown constant. The height of the water at ebb (§ = T or
0= 37”) is
1GM /r\2
hevb = o = 5~ () 1.31
ebb 0~ 5 ok \R (1.31)
The height difference between flood and ebb is therefore
3GM /r\2
A== (5) 1.32
2 gR \R ( )
For a numerical result we need the following values:
Myioon = 7.35-10%°g, g =9.81m/s?, (1.33)
R=3.85-10°km,  rgarn = 6378km. (1.34)

With these values we find Ah = 53cm, which is typical of tidal height differences.



1.4 The Principle of Equivalence

1.4 The Principle of Equivalence

Galilei investigated experimentally the motion of freely falling bodies. He found
that they moved in the same way, regardless what sort of material they consisted
of and what mass they had.

In Newton’s theory of gravitation mass appears in two different ways; as
gravitational mass, mqg, in the law of gravitation, analogously to charge in
Coulomb’s law, and as inertial mass, m; in Newton’s 2nd law.

The equation of motion of a freely falling particle in the field of gravity from
a spherical body with mass M then takes the form

d*v mag M _,

L . 1.
dt? mr el (1.35)

The results of Galilei’s measurements imply that the quotient between gravita-
tional and inertial mass must be the same for all bodies. With a suitable choice
of units, we then obtain

mg = mj. (1.36)

Measurements performed by the Hungarian baron Eétvés around the turn
of the century indicated that this equality holds with an accuracy better than
1078, More recent experiments have given the result Il — 1 <9- 10713,

Einstein assumed the exact validity of eq.(1.52). He did not consider this as
an accidental coincidence, but rather as an expression of a fundamental principle,
called the principle of equivalence.

A consequence of this principle is the possibility of removing the effect of
a gravitational force by being in free fall. In order to clarify this, Einstein
considered a homogeneous gravitational field in which the acceleration of gravity,
g, is independent of the position. In a freely falling, non-rotating reference frame
in this field, all free particles move according to

d*7
mr——
T
where eq. (1.36) has been used.
This means that an observer in such a freely falling reference frame will say

that the particles around him are not acted upon by forces. They move with
constant velocities along straight paths. In other words, such a reference frame

= (mg —mr)g =0, (1.37)

is inertial.

Einstein’s heuristic reasoning suggests equivalence between inertial frames in
regions far from mass distributions, where there are no gravitational fields, and
inertial frames falling freely in a gravitational field. This equivalence between all
types of inertial frames is so intimately connected with the equivalence between
gravitational and inertial mass, that the term “principle of equivalence” is used
whether one talks about masses or inertial frames. The equivalence of different
types of inertial frames encompasses all types of physical phenomena, not only
particles in free fall.

The principle of equivalence has also been formulated in an “opposite” way.
An observer at rest in a homogeneous gravitational field, and an observer in
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an accelerated reference frame in a region far from any mass distributions, will
obtain identical results when they perform similar experiments. An inertial
field caused by the acceleration of the reference frame, is equivalent to a field of
gravity caused by a mass distribution, as far is tidal effects can be ignored.

1.5 The general principle of relativity

The principle of equivalence led Einstein to a generalization of the special princi-
ple of relativity. In his general theory of relativity Einstein formulated a general
principle of relativity, which says that not only velocities are relative, but accel-
erations, too.

Consider two formulations of the special principle of relativity.

S1 All laws of Nature are the same (may be formulated in the same way) in all
inertial frames.

S2 Every inertial observer can consider himself to be at rest.

These two formulations may be interpreted as different formulations of a
single principle. But the generalization of S1 and S2 to the general case, which
encompasses accelerated motion and non-inertial frames, leads to two different
principles G1 and G2.

G1 The laws of Nature are the same in all reference frames.

G2 Every observer can consider himself to he at rest.

In the literature both G1 and G2 are mentioned as the general principle of
relativity. But G2 is a stronger principle (i.e. stronger restriction on natural
phenomena) than G1. Generally the course of events of a physical process
in a certain reference frame, depends upon the laws of physics, the boundary
conditions, the motion of the reference frame and the geometry of space-time.
The two latter properties are described by means of a metrical tensor. By
formulating the physical laws in a metric independent way, one obtains that G1
is valid for all types of physical phenomena.

Even if the laws of Nature are the same in all reference frames, the course of
events of a physical process will, as mentioned above, depend upon the motion
of the reference frame. As to the spreading of light, for example, the law is that
light follows null-geodesic curves (see ch. 4). This law implies that the path of
a light particle is curved in non-inertial reference frames and straight in inertial
frames.

The question whether G2 is true in the general theory of relativity has been
thoroughly discussed recently, and the answer is not clear yet.
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1.6 The covariance principle

The principle of relativity is a physical principle. It is concerned with physical
phenomena. This principle motivates the introduction of a formal principle,
called the covariance principle: The equations of a physical theory shall have
the same form in every coordinate system.

This principle is not concerned directly with physical phenomena. The
principle may be fulfilled for every theory by writing the equations in a form-
invariant i.e. covariant way. This may he done by using tensor (vector) quanti-
ties, only, in the mathematical formulation of the theory.

The covariance principle and the equivalence principle may be used to obtain
a description of what happens in the presence of gravitation. We then start
with the physical laws as formulated in the special theory of relativity. Then
the laws are written in a covariant form, by writing them as tensor equations.
They are then valid in an arbitrary, accelerated system. But the inertial field
(“fictive force”) in the accelerated frame is equivalent to a gravitational field. So,
starting with in a description referred to an inertial frame, we have obtained a
description valid in the presence of a gravitational field.

The tensor equations have in general a coordinate independent form. Yet,
such form-invariant, or covariant, equations need not fulfill the principle of rel-
ativity.

This is due to the following circumstances. A physical principle, for example
the principle of relativity, is concerned with observable relationships. Therefore,
when one is going to deduce the observable consequences of an equation, one
has to establish relations between the tensor-components of the equation and
observable physical quantities. Such relations have to be defined; they are not
determined by the covariance principle.

From the tensor equations, that are covariant, and the defined relations
between the tensor components and the observable physical quantities, one can
deduce equations between physical quantities. The special principle of relativity,
for example, demands that the laws which these equations express must be the
same with reference to every inertial frame

The relationships between physical quantities and tensors (vectors) are the-
ory dependent. The relative velocity between two bodies, for example, is a
vector within Newtonian kinematics. However, in the relativistic kinematics of
four-dimensional space-time, an ordinary velocity, which has only three com-
ponents, is not a vector. Vectors in space-time, so called 4-vectors, have four
components. Equations between physical quantities are not covariant in general.

For example, Maxwell’s equations in three-vector-form are not invariant un-
der a Galilei transformation. However, if these equations are rewritten in tensor-
form, then neither a Galilei transformation nor any other transformation will
change the form of the equations.

If all equations of a theory are tensor equations, the theory is said to be given
a manifestly covariant form. A theory that is written in a manifestly covariant
form, will automatically fulfill the covariance principle, but it need not fulfill
the principle of relativity.
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1.7 Mach’s principle

Einstein gave up Newton’s idea of an absolute space. According to Einstein all
motion is relative. This may sound simple, but it leads to some highly non-trivial
and fundamental questions.

Imagine that there are only two particles connected by a spring, in the
universe. What will happen if the two particles rotate about each other? Will
the spring be stretched due to centrifugal forces? Newton would have confirmed
that this is indeed what will happen. However, when there is no longer any
absolute space that the particles can rotate relatively to, the answer is not so
obvious. If we, as observers, rotate around the particles, and they are at rest,
we would not observe any stretching of the spring. But this situation is now
kinematically equivalent to the one with rotating particles and observers at rest,
which leads to stretching.

Such problems led Mach to the view that all motion is relative. The motion
of a particle in an empty universe is not defined. All motion is motion relatively
to something else, i.e. relatively to other masses. According to Mach this implies
that inertial forces must be due to a particle’s acceleration relatively to the great
masses of the universe. If there were no such cosmic masses, there would not
exist inertial forces, like the centrifugal force. In our example with two particles
connected by a string, there would not be any stretching of the spring, if there
were no cosmic masses that the particles could rotate relatively to.

Another example may be illustrated by means of a turnabout. If we stay
on this, while it rotates, we feel that the centrifugal forces lead us outwards.
At the same time we observe that the heavenly bodies rotate. According to
Mach identical centrifugal forces should appear if the turnabout is static and
the heavenly bodies rotate.

Einstein was strongly influenced by Mach’s arguments, which probably had
some influence, at least with regards to motivation, on Einstein’s construction
of his general theory of relativity. Yet, it is clear that general relativity does not
fulfill all requirements set by Mach’s principle. For example there exist general
relativistic, rotating cosmological models, where free particles will tend to rotate
relative to the cosmic masses of the model.

However, some Machian effects have been shown to follow from the equations
of the general theory of relativity. For example, inside a rotating, massive
shell the inertial frames, i.e. the free particles, are dragged on and tend to
rotate in the same direction as the shell. This was discovered by Lense and
Thirring in 1918 and is therefore called the Lense-Thirring effect. More recent
investigations of this effect have, among others, lead to the following result (Brill
and Cohen 1966): “A massive shell with radius equal to its Schwarzschild radius
has often been used as an idealized model of our universe. Our result shows
that in such models local inertial frames near the center cannot rotate relatively
to the mass of the universe. In this way our result gives an explanation in
accordance with Mach’s principle, of the fact that the “fixed stars” is at rest on
heaven as observed from an inertial reference frame.”



Chapter 2

Vectors, Tensors and Forms

2.1 Vectors

An expression on the form a#€,, where a*, u = 1,2,...,n are real numbers, is
known as a linear combination of the vectors €,.

The vectors €1, ..., €, are said to be linearly independent if there does not
exist real numbers a* # 0 such that a*€), = 0.

\/

Figure 2.1: Closed polygon (linearly dependent)

Geometrical interpretation: A set of vectors are linearly independent if it
is not possible to construct a closed polygon of the vectors (even by adjusting
their lengths).

A set of vectors €1, . . ., €, are said to be maximally linearly independent
if €1,...,€,,7 are linearly dependent for all vectors v # €,. We define the
dimension of a vector-space as the number of vectors in a maximally linearly
independent set of vectors of the space. The vectors €, in such a set are known

13
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as the basis-vectors of the space.

v+a'e, = 0
4
v = —dle, (2.1)
The components of ¥ are the numbers v* defined by v# = —at = ¥ = vFe),.

2.1.1 4-vectors

4-vectors are vectors which exist in (4-dimensional) space-time. A 4-vector
equation represents 4 independent component equations.

O e O
Figure 2.2: Carriage at rest (top) and with velocity ¥ (bottom)

Example 2.1.1 (Photon clock)
Carriage at rest:

Aty =~
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Carriage with velocity ¥

2 (v%)2 + L2

At =
C
4
AN = V2A + 412
4
At 2L 2L/c Aty 22)

\/62—1)2: \/1—02/02 \/1—1)2/02

The proper time-interval is denoted by dr (above it was denoted Aty). The
proper time-interval for a particle is measured with a standard clock which
follows the particle.

Definition 2.1.1 (4-velocity)

- dt , dz dy _, dz
U= ¢ + e + e + 7. (2.3)

where t is the coordinate time, measured with clocks at rest in the reference frame.

- dx*

U = Ule, = e € o= (ct,z,y,2), 2’=ct
-
dt 1
—_ = — = 24
dr 02 v (24)
-

U= v(e, V), where ¥ is the common 3-velocity of the particle.

Definition 2.1.2 (4-momentum)

]3 = moﬁ, (25)

where my is the rest mass of the particle.
P = (%,ﬁ) where p'= ymo¥ = m and E is the relativistic energy.

The 4-force or Minkowski-force F' = fl—f and the ’common force’ f = fl—f.
Then .
F=y(f-5.) (2.6)
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ct

K world line of amaterial particle

’ lightcone

-7 . .
/ _.-~7 tachyons, if they exist,
: -7 should havev >c¢

y
X
Figure 2.3: World-lines in a Minkowski diagram
Definition 2.1.3 (4-acceleration)
- dU
A=— 2.7
dr 27)
The 4-velocity has the scalar value ¢ so that
U-U=—¢ (2.8)

Definition of Eq. 2.8 gives U-A= 0, which implies A 1 U and that A is
space-like.
The line element for Minkowski space-time (flat space-time) with Cartesian
coordinates is
ds? = —c2dt? + da® + dy? + dz* (2.9)

In general relativity theory, gravitation is not considered a force. Gravitation
is instead described as motion in a curved space-time.

A particle in free fall, is in Newtonian gravitational theory said to be only
influenced by the gravitational force. According to general relativity theory the
particle is not influenced by any force.

Such a particle has no 4-acceleration. A # (0 implies that the particle is not
in free fall. It is then influenced by non-gravitational forces.

One has to distinguish between observed acceleration, ie. common 3-acceleration,

and the absolute 4-acceleration.
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2.1.2 Tangent vector fields and coordinate vectors

In a curved space position vectors with finite length do not exist. (See figure
2.4).

N(North pole)

Figure 2.4: In curved space,vectors can only exist in ta_n)gent planes.The vectors
in the tangent plane of N,do not contain the vector NP (dashed line).

Different points in a curved space have different tangent planes. Finite vec-
tors do only exist in these tangent planes (See figure 2.5). However, infinitesimal
position vectors di’ do exist.

tangent plane of point P:

Figure 2.5: In curved space,vectors can only exist in tangent planes
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Definition 2.1.4 (Reference frame)
A reference frame is defined as a continuum of non-intersecting timelike world
lines in spacetime.

We can view a reference frame as a set of reference particles with a specified
motion. An inertial reference frame is a non-rotating set of free particles.

Definition 2.1.5 (Coordinate system)
A coordinate system is a continuum of 4-tuples giving a unique set of coordinates
for events in spacetime.

Definition 2.1.6 (Comoving coordinate system)
A comoving coordinate system in a frame is a coordinate system where the
particles in the reference frame have constant spatial coordinates.

Definition 2.1.7 (Orthonormal basis)
An orthonormal basis {¢},} in spacetime is defined by

(2.10)
where ¢ and j are space indices.
Definition 2.1.8 (Coordinate basis vectors.)
Temporary definition of coordinate basis vector:
Assume any coordinate system {x*}.
or
go= 2.11
= G (2.11)

A wector field is a continuum of vectors in a space, where the components are
continuous and differentiable functions of the coordinates. Let ¢ be a tangent
vector to the curve 7(\):

dr

o where 7= 7zt ()] (2.12)

7=
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The chain rule for differentiation yields:

7 7 drt Iz
Thus, the components of the tangent vector field along a curve, parameterised
by A, is given by:
i e
dA
In the theory of relativity, the invariant parameter is often chosen to be the
proper time. Tangent vector to the world line of a material particle:

(2.14)

i
w = (2.15)
dr
These are the components of the 4-velocity of the particle!
Digression 2.1.1 (Proper time of the photon.)
Minkowski-space:
ds? = —Pdt® + da?
1 dx.2
_ 2324 _ 1 0T
= —cdi*(1-5(5)) (2.16)
VPN 90
For a photon,v = ¢ so:
lim ds® = 0 (2.17)

v—C

Thus, the spacetime interval between two points on the world line of a photon, is
zero! This also means that the proper time for the photon is zero!! (See example
2.1.2).

Digression 2.1.2 (Relationships between spacetime intervals, time and proper time.)
Physical interpretation of the spacetime interval for a timelike interval:

ds? = —c2dr? (2.18)

where d7 is the proper time interval between two events, measured on a clock
moving in a way, such that it is present on both events (figure 2.6).

—Adr? = —02(1——)dt2

1}2
=dr = \[1- dt (2.19)
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X

Figure 2.6: P, and P> are two events in spacetime, separated by a proper time
interval dr.

The time interval between to events in the laboratory, is smaller measured on a
moving clock than measured on a stationary one, because the moving clock is
ticking slower!

2.1.3 Coordinate transformations

Given two coordinate systems {z#} and {x*'}.

or

_ 2.20

= o (220)

Suppose there exists a coordinate transformation, such that the primed coor-

dinates are functions of the unprimed, and vice versa. Then we can apply the
chain rule:

or or ozt _ Oz
G ozt

€y =

B e Qxt Ot

(2.21)

This is the transformation equation for the basis vectors. 8;:, are elements

of the transformation matrix. Indices that are not sum-indices are called ’free
indices’.

Rule: In all terms on each side in an equation, the free indices should
behave identically (high or low), and there should be exactly the same
indices in all terms!
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Applying this rule, we can now find the inverse transformation

o ., Ozt
e = €,/
’ HOxr
. ' - ', Ot
7 = vey =vte, =" e, -
ozt

So, the transformation rules for the components of a vector becomes

!/
@ "
' Ox u/_vuax

TR .
v = v
Oxt'"’ Oxt

The directional derivative along a curve, parametrised by A:
d o dxt 0

Bl Y T
d\  Ox* d)\ OxH

dxzt

(2.22)

(2.23)

where v/ = €7~ are the components of the tangent vector of the curve. Direc-

tional derivative along a coordinate curve:

0 Ox* 0 0
)\ = Y B — = (S/J' _— =
. Ozt Oxv YOxk  Oxv
In the primed system:

o oxt 9
ozt Oxt Jxh

Definition 2.1.9 (Coordinate basis vectors.)
We define the coordinate basis vectors as:

0

e =
o Oam

—

(2.24)

(2.25)

(2.26)

This definition is not based upon the existence of finite position vectors. It applies

in curved spaces as well as in flat spaces.

Example 2.1.2 (Coordinate transformation)
From Figure 2.7 we see that

x=rcosf, y=rsind

Coordinate basis vectors were defined by

0
Cu OxH

(2.27)

(2.28)
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Yy —
&
€,
Y ‘
_ r |
& |
0 |
&
Figure 2.7: Coordinate transformation, flat space.
This means that we have
T oz oy T or - 06 (2.29)
) '
" 9r  Ordx  Orody
Using the chain rule and Equations (2.27) and (2.29) we get
€, = cos fe; + sin fey,
. 0 0x 0 O0yo
A A 2.30
=20 a00x T 900y (2.30)
= —rsinfe; + rcos ey
But are the vectors in (2.30) also unit vectors?
¢ - 6. = cos*0 + sin?0 = 1 (2.31)
So €, is a unit vector, |é| = 1.
€ - €9 = r*(cos®0 + sin6) = r? (2.32)

and we see that € is not a unit vector, |éj| = r. But we have that €, -€p =0 =
e, lép. Coordinate basis vectors are not generally unit vectors.
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Definition 2.1.10 (Orthonormal basis)

An orthonormal basis is a vector basis consisting of unit vectors that are normal to
each other. To show that we are using an orthonormal basis we will use "hats’ over
the indices, {€}}.

Orthonormal basis associated with planar polar coordinates:

1
— 25 (2.33)

r

>

€ =€, €

Example 2.1.3 (Relativistic Doppler Effect)

The Lorentz transformation is known from special relativity and relates the reference
frames of two systems where one is moving with a constant velocity v with regard
to the other,

2 = y(x — vt)
VT
=t - 0—2)

According to the vector component transformation (2.22), the 4-momentum for a
particle moving in the x-direction, P* = (%,p,0,0) transforms as

’ afL’Ml
pH — 1
ozt~
E'=~(E - vp).

Using the fact that a photon has energy £ = hv and momemtum p = % where
h is Planck’s constant and v is the photon’s frequency, we get the equation for the
frequency shift known as the relativistic Doppler effect,

1-Y%Y) v
J— V) = (1-2)
c
V=2 +2)
v c—v
- = (2.34)
v c+wv
2.1.4 Structure coefficients
Definition 2.1.11 (Commutators between vectors)
The commutator between two vectors, @ and v, is defined as
(@, U] = uv — vu (2.35)
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where 4v is defined as

(0 ) (2.36)

We can think of a vector as a linear combination of partial derivatives. We get:

ov” 0 0?
uv = ut + utv”
OxH Oxv OxHdxv (2.37)
L oY Lt 0?
=u €, + ut'v
oxr oxHoxY
Due to the last term, @ is not a vector.
0 0
ST n_
Y Y oz (u 83:N)
L out Lo 0?
=v'—¢€, +v"u
oxv ox¥ Oz
o . our (2.38)
U— U = u €, —v'—¢€
oxr oxv "
N——
v“%e}
ov” ou”
— (M _ ot e
= (v ozt v 8m“)ey
Here we have used that
0? 0?
= 2.39
dxHoxv  Oz¥ Ozt ( )
The Einstein comma notation =
v — v = (u'v”, — vt e, (2.40)
As we can see, the commutator between two vectors is itself a vector.
Definition 2.1.12 (Structure coefficients ¢/, )
The structure coefficients ¢/, in an arbitrary basis {¢,,} are defined by:
€, €] =6 (2.41)
Structure coefficients in a coordinate basis:
S 0 0
s 1= g )
o , 0 o , 0
= 5w o)~ o G (242)
0? 0?

- dzrdx’  Oxvdzk
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The commutator between two coordinate basis vectors is zero, so the structure
coefficients are zero in coordinate basis.

Example 2.1.4 (Structure coefficients in planar polar coordinates)
We will find the structure coefficients of an orthonormal basis in planar polar coor-
dinates. In (2.33) we found that

€ =€, € =—E (2.43)

We will now use this to find the structure coefficients.

6= Lo o]
R
_ 2(12) _ 12(2)
Orrol rd0 " Or 9.44
1o 18 1 (24
200  rordd rOhor

1, 1,
= ——€p == —— €,
20 0
To find the structure coefficients in coordinate basis we must use [¢; , €] = —1é.
[gﬂ , €] = Cpﬂggﬁ (2.45)
Using (2.44) and (2.45) we get
j 1
0 — _=
From the definition of ¢/, ([@, U] = —[0, u]) we see that the structure coefficients
are anti symmetric in their lower indices:
Ay = —ch,, (2.47)
~ 1 ~
6 _ L+ _ _ 0
Cop =7 = ~Cis (2.48)
2.2 Tensors
A 1-form-basis w!,...,w" is defined by:
wh(é)) = 0¥, (2.49)

An arbitrary 1-form can be expressed, in terms of its components, as a linear
combination of the basis forms:

a = auwt (2.50)
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where o, are the components of « in the given basis.
Using egs.(2.49) and (2.50), we find:

e

(€v) = augu(gu) = audh, = ay
(

We will now look at functions of multiple variables.

(2.51)

<y

a
) = a(vié,) = v'a(e,) = v o, = viag +vias + ...

12

Definition 2.2.1 (Multilinear function, tensors)
A multilinear function is a function that is linear in all its arguments and maps
one-forms and vectors into real numbers.

e A covariant tensor only maps vectors.
e A contravariant tensor only maps forms.

e A mixed tensor maps both vectors and forms into R.

A tensor of rank ( ]]\Y,) maps N one-forms and N’ vectors into R. It is usual to
say that a tensor is of rank (N + N’). A one-form, for example, is a covariant
tensor of rank 1:

a(v) = vty (2.52)

Definition 2.2.2 (Tensor product)
The basis of a tensor R of rank ¢ contains a tensor product, ®. If T and S are
two tensors of rank m and n, the tensor product is defined by:

T ® S(Ulyeeey Uppy V1 yeeey Upy) = T(U ey Upn ) S (074, Up,) (2.53)

where T and S are tensors of rank m and n, respectively. T'® S is a tensor of rank
(m+mn).

Let R=T ®S. We then have
R=Ry  w"Q0uw?®. ®wh (2.54)

Notice that S® T # T ® S. We get the components of a tensor (R) by using
the tensor on the basis vectors:

Ruy,ong = Rle s e,) (2.55)

The indices of the components of a contravariant tensor are written as upper
indices, and the indices of a covariant tensor as lower indices.



2.2 Tensors

27

Example 2.2.1 (Example of a tensor)
Let @ and ¥ be two vectors and « and 3 two 1-forms.

— —

U =ule,; v=vle,; a=oaw’ B=pF.w" (2.56)

From these we can construct tensors of rank 2 through the relation R = 4 ® ¥ as
follows: The components of R are

RIMUF2 = R(wh, wh?)
= 7 ® (W, w)
= (w") T (W)
= W ()0 e (W)
= ulot ¥ 6l7

= yH1yh?

(2.57)

2.2.1 Transformation of tensor components

We shall not limit our discussion to coordinate transformations. Instead, we
will consider arbitrary transformations between bases, {¢,} — {€,}. The
elements of transformation matrices are denoted by M ‘; , such that

G = E,M", and &, =&, M"Y (2.58)

where M ‘[L/ are elements of the inverse transformation matrix. Thus, it follows
that

MY, MY = ot (2.59)

If the transformation is a coordinate transformation, the elements of the matrix
become

’ 8.17“/

2.2.2 Transformation of basis 1-forms

Wt = M ot
- e (2.61)
wh = M*",w*
w s
The components of a tensor of higher rank transform such that every con-
travariant index (upper) transforms as a basis 1-form and every covariant index
(lower) as a basis vector. Also, all elements of the transformation matrix are
multiplied with one another.
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Example 2.2.2 (A mixed tensor of rank 3)

%, =M% M, MY, TS, (2.62)
The components in the primed basis are linear combinations of the components
in the unprimed basis.

Tensor transformation of components means that tensors have a basis in-
dependent existence. That is, if a tensor has non-vanishing components in a
given basis then it has non-vanishing components in all bases. This means
that tensor equations have a basis independent form. Tensor equations are
invariant. A basis transformation might result in the vanishing of one or more
tensor components. Equations in component form may differ from one basis to
another. But an equation expressed in tensor components can be transformed
from one basis to another using the tensor component transformation rules. An
equation that is expressed only in terms of tensor components is said to be
covariant.

2.2.3 The metric tensor

Definition 2.2.3 (The metric tensor)
The scalar product of two vectors @ and ' is denoted by g(@,?) and is defined as
a symmetric linear mapping which for each pair of vectors gives a scalar g(v,4) =

—

g(u,v)

The value of the scalar product g(u,v) is given by specifying the scalar
products of each pair of basis-vectors in a basis.

g is a symmetric covariant tensor of rank 2. This tensor is known as the
metric tensor. The components of this tensor are

9(€u, €) = g (2.63)
U= g(ﬁa 6) = g(u“é}h vygV) = u#UVg(é’“7 51/) = ufu’g uv (264)

Usual notation:
0-v=g,u"v" (2.65)

The absolute value of a vector:

0] = V9(0,7) = /g ot (2.66)
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e

1

Figure 2.8: Basis-vectors € and €»

Example 2.2.3 (Cartesian coordinates in a plane)

Gple=1, G- =1, GG =& =0

gmr:gyyzlv gzy:gyzzo (267)

(10
T =1\0 1

Example 2.2.4 (Basis-vectors in plane polar-coordinates)

€ & =1 & -8=r° & =0, (2.68)

The metric tensor in plane polar-coordinates:

G = <(1) g) (2.69)

Example 2.2.5 (Non-diagonal basis-vectors)

51-51:1, 52‘€2:1, €1-€2:COSGI€2-€1
(1 cosO\ (g1 912 (2.70)
T =Ncost 1 )~ 921 922

Definition 2.2.4 (Contravariant components)
The contravariant components g"® of the metric tensor are defined as:

9g 0 =0, g =, (2.71)
where w* is defined by
wt -, = 0. (2.72)

g"" is the inverse matrix of g ,,,.
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6)2
AP §.
\\ A2
¥= constant
\\\\ ez /
Azé/} %f,& - —— x!= constant
Wl .
l 1
1A |
Ate, !
Al
A, PN L
1 (,01

Figure 2.9: The covariant- and contravariant components of a vector

It is possible to define a mapping between tensors of different type (eg.
covariant on contravariant) using the metric tensor.
We can for instance map a vector on a 1-form:

vy = g(0,€u) = g(v €n, ) = vVg(Eas €u) = Vg (2.73)
This is known as lowering of an index. Raising of an index becomes :
vt = gl (2.74)
The mixed components of the metric tensor becomes:
9", =9""g 0 =9, (2.75)

We now define distance along a curve. Let the curve be parameterized by A
(proper-time 7 for time-like curves). Let ¢ be the tangent vector-field of the
curve.

The squared distance ds? between the points along the curve is defined as:

ds® = g(U, ¥)d\? (2.76)
gives

ds® = g, v'v"dX’. (2.77)
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The tangent vector has components v* = %, which gives:

ds* = g pdztdx” (2.78)

The expression ds? is known as the line-element.

Example 2.2.6 (Cartesian coordinates in a plane)

Gor =9y =1 95, =9%=0

ds® = da® + dy? (2.79)
Example 2.2.7 (Plane polar coordinates)
’ ers?::l 7dr2g—i0r2:d;z (2:80)
Cartesian coordinates in the (flat) Minkowski space-time :
ds* = —c2dt? + da® + dy® + dz? (2.81)

In an arbitrary curved space, an orthonormal basis can be adopted in any
point. If €; is tangent vector to the world line of an observer, then € =
where 1 is the 4-velocity of the observer. In this case, we are using what we call
the comowving orthonormal basis of the observer. In a such basis, we have the
Minkowski-metric:

ds* = nﬂl;dx[‘dxﬁ (2.82)

2.3 Forms

An antisymmetric tensor is a tensor whose sign changes under an arbitrary
exchange of two arguments.

A(-ee iy Ty ) = —A( e Ty i) (2.83)

The components of an antisymmetric tensor change sign under exchange of
two indices.

Aoy = =Ap. (2.84)
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Definition 2.3.1 (p-form)
A p-form is defined to be an antisymmetric, covariant tensor of rank p.
An antisymmetric tensor product A is defined by:

|
g[/ﬂ Q.- ®gﬂp} A g[l’l R w”q] = Mw[ﬂl R ® qu} (2_85)

w g~

where [ | denotes antisymmetric combinations defined by:

1
WM @ ... @utl = — - (the sum of terms with
p!

all possible permutations (2.86)
of indices with, “+” for even

and “” for odd permutations)

Example 2.3.1 (antisymmetric combinations)

1
Wl @ el = i(gm ®wh? — W @ W) (2.87)

Example 2.3.2 (antisymmetric combinations)

Wl @ w2 @ Wl =

1

5(2’“ ®wh? @ wh? + W @ W @ w'? + w"? @ W' ®w
—w'? QWM ®whd — W ® g‘” ® g’“ _ g/ﬁl ® gm ® QMQ)

1
= 5%%(@” ®w' @ w'*) (2.88)

Example 2.3.3 (A 2-form in 3-space)

a = a1 W+ anw? @w! +a13w! @w? + ag1w?® @w! +agsw? ®w? + azaw® ®W?
(2.89)

Now the antisymmetry of o means that

Tt = —Qq9;  TQg3p = —Qq3;  TQ39 = —Qo3 (2.90)
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(2.91)

where |pv| means summation only for y < v (see (Misner, Thorne and Wheeler
1973)). We now use the definition of A with p = ¢ = 1. This gives

a = o w' Aw”

) wh A w" is the
We can also write form basis.

a= oWt AW

A tensor of rank 2 can always be split up into a symmetric and an antisym-
metric part.

1 1
T = §(Tuv - Tvu) + §(T/w + Tvu) (2.92)
= A,uy + S,uz/
We thus have:
1
S Al = Z(TW + T, (TH = TVH)
1
= (T = T T Ty T — Ty, T) (2.93)
=0

In general, summation over indices of a symmetric and an antisymmetric quan-
tity vanishes. In a summation 7),, A*” where A*” is antisymmetric and 7),, has
no symmetry, only the antisymmetric part of T}, contributes. So that, in

1
a= 5%;&“ Aw” (2.94)

only the antisymmetric elements o, = —ay,, contribute to the summation.
These antisymmetric elements are the form components

Forms are antisymmetric covariant tensors. Because of this antisymmetry
a form with two identical components must be a null form (= zero). e.g.
aigr = —a31 = o131 =0

In an n-dimensional space all p-forms with p > n are null forms.



Chapter 3

Accelerated Reference Frames

3.1 Rotating reference frames

3.1.1 Space geometry

Let €, be the 4-velocity field (20 = ct,c = 1,2" = t) of the reference particles in
a reference frame R. A set of simultanous events in R, defines a 3 dimensional
space called ’3-space’ in R. This space is orthogonal to €;. We are going to
find the metric tensor +;; in this space, expressed by the metric tensor g,, of
spacetime.

In an arbitrary coordinate basis {€,,}, {€;} is not necessarily orthogonal to
€o. We choose ép||¢;. Let €1; be the projection of €; orthogonal to €y, that
is:€1; - €0 = 0. The metric tensor of space is defined by:

Yij = €1i - €15,7%0 = 0,70 =0

€li = € —€|;

€€, Gi0
€li = > =€ = €0

—

€0 " €o goo

Yij = (€ — €||i) (€ — 5||j)

o gio - o gjo -
= (€, — =—¢y) - (e, — =—¢€p
& goo )@ goo )
:gi.gj_gﬂ_ogo.gi_gﬂgo.%Jrg_’OQgﬂogo.go
goo goo 900
= gij — gi0gj0  Gi0950 i 9i0950
900 900 900
39i09;0
= Yij = gij — —— (3.1)
goo
(Note:gij = gji = Vij = Vji)
The line element in space:
dI? = yda‘da? = (g — M)dxidxj (3.2)

goo

34
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gives the geometry of a “simultaneity space” in a reference frame where the
metric tensor of spacetime in a comoving coordinate system is g, .
The line element for spacetime can be expressed as:

ds* = —dt* + dI? (3.3)

It follows that df = 0 represents the simultaneity defining the 3-space with
metric Yij -

di? = dI* —ds* = (yu — guv)datda”
= (vij — gi)dz'dz? + 2(vio — gio)dz'dz® + (o0 — goo)da"da”

= (gij — giogjo _ gij)d:rid:nj — 2gioda’da® — goo(dfno)2
= —9g00 {(dm0)2 12990 420gni ¢ gzogjod ida:j]
goo 900
2
= [ + 240t
goo
So finally we get
df = (—goo)/2(da® + 22 da') (3.4)
goo

The 3-space orthogonal to the world lines of the reference particles in R, df = 0,
corresponds to a coordinate time interval dt = —%dmi. This is not an exact
differential , that is , the line integral of dt around a closed curve is in general not
equal to 0. Hence you can not in general define simultaneity (given by dt = 0)
around closed curves. This can only be done if the spacetime metric is diagonal,
gio = 0. The condition df = 0 means simultaneity on Einstein synchronized
clocks . Conclusion:It is in general (g0 # 0) not possible to Einstein
synchronize clocks around closed curves.

In particular, it is not possible to Einstein-synchronize clocks around a closed
curve in a rotating reference frame. If this is attempted, contradictory bound-
ary conditions in the non-rotating lab frame will arise, due to the relativity of
simultaneity. (See figure 3.1)

The distance in the laboratory frame between two points is:

2rr
Lo=— 3.5
0= (35)

Lorentz transformation from the instantaneous rest frame (2/,¢') to the labo-
ratory system (x,t):

v
At = (At + 5 A), v =

L (3.6)

C

Az = y(Az +vAl)
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t+2At

t+A t
S

t& t+nAt (discontinuity)

Sy

t+(n-1) At

Sn1

Figure 3.1: Events simultanous in the rotating reference frame. 1 comes before
2, before 3, etc... Note the discontinuity at t.

Figure 3.2: The distance between two points on the circumference is L.
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6 =constant | { =constant

Figure 3.3: Discontinuity in simultaneity.

Since we for simultaneous events in the rotating reference frame have At’ = 0,
and proper distance Ax’ = «vLg, we get in the laboratory frame
rw rw 2mr
At =72 —Lo=~*—="— 3.7
T E =Y a T, (3.7)
The fact that At = 0 and At # 0 is an expression of the relativity of simul-
taneity. Around the circumference this is accumulated to

2
9 2mrew

nAt =y 5
c

(3.8)

and we get a discontinuity in simultaneity, as shown in figure 3.3. Let IF be an
inertial frame with cylinder coordinates (T, R, ©, Z). The line element is then
given by

ds* = —dT? + dR* + R*d0* + dZ*> (c=1) (3.9)

In a rotating reference frame, RF, we have cylinder coordinates (t, r, 0, z). We
then have the following coordinate transformation :

t=T, r=R, 0=0—-uwWT, z=Z (3.10)
The line element in the co-moving coordinate system in RF is then

ds? = —dt? + dr® 4 r*(df + wdt)? + dz*

3.11
= —(1 — 2w dt® + dr® + r2d6* + d2% + 2r°wdfdt  (c = 1) (3.11)
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The metric tensor have the following components:

git = _(1 - r2w2), Grr = 17 9o = T27 9zz = 1

9 (3.12)
gor = g9 =T W

dt = 0 gives
ds® = dr® + r2db? + dz* (3.13)

This represents the Euclidean geometry of the 3-space (simultaneity space, t =
T) in IF.

The spatial geometry in the rotating system is given by the spatial line
element:

di? = (gi; — L0990 1y 4y
goo

Yrr =Grr =1, Yoz = gz = 1,
2

g
79(9:999—ﬂ
goo
2, )2 2
rTw T
IR )

—(1—r2w?)  1— 22

2,702
= dl2:dr2+1ri

— 5 +d7 (3.14)

So we have a non Euclidean spatial geometry in RF. The circumference of a
circle with radius r is
27r
lp = ———= > 27r 3.15
N (3.15)
We see that the quotient between circumference and radius > 27 which means
that the spatial geometry is hyperbolic. (For spherical geometry we have ly <
27r.)

3.1.2 Angular acceleration in the rotating frame

We will now investigate what happens when we give RF an angular acceleration.
Then we use a rotating circle made of standard measuring rods, as shown in
Figure 3.4. All points on a circle are accelerated simultaneously in IF (the
laboratory system). We let the angular velocity increase from w to w + dw,
measured in IF. Lorentz transformation to an instantaneous rest frame for a
point on the circumference then gives an increase in velocity in this system:

, rdw

where we have used that the initial velocity in this frame is zero.
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\) Standard measuring rod

Figure 3.4: The standard measuring rods are fastened with nails in one end.
We will see what then happens when we have an angular acceleration.

The time difference for the accelerations of the front and back ends of the
rods (the front end is accelerated first) in the instantaneous rest frame is:

rwlyg

V1—1r2w?

where L is the distance between points on the circumference when at rest (= the
length of the rods when at rest), Lo = 2% In IF all points on the circumference
are accelerated simultaneously. In RF, however, this is not the case. Here the
distance between points on the circumference will increase, see Figure 3.5. The
rest distance increases by

At = (3.17)

r2wLodw

r IA
dL' = rdw' At = —(1—7"2012)3/2'

(3.18)

The increase of the distance during the acceleration (in an instantaneous

U+ At t
° o—— dv

Figure 3.5: In RF two points on the circumference are accelerated at different
times. Thus the distance between them is increased.
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rest frame) is

v dw 1
L = 2L/w—=——1L. 3.19
t o (1 —1r2w2)3/2 (\/1 —r2w? Mo (3.19)

Hence, after the acceleration there is a proper distance L’ between the rods. In
the laboratory system (IF) the distance between the rods is

1
L=1-r2wL = /1 - 12— —1)Lo = Lo — Lo\/1 — r2u?
V1 —r2w? ’
(3.20)

where Ly is the rest length of the rods and Lov/1 — r2w? is their Lorentz con-
tracted length. We now have the situation shown in Figure 3.6.

At

-

™

Standard measuring rod,
Lorenz contracted

Figure 3.6: The standard measuring rods have been Lorentz contracted.

Thus, there is room for more standard rods around the periphery the faster
the disk rotates. This means that the measured length of the periphery (number
of standard rods) gets larger with increasing angular velocity.

3.1.3 Gravitational time dilation

2,2

rTw
ds®* = —(1 —
s ( =2

YEdt? 4 dr? + r?d6? + dz® + 2r*wddt (3.21)

We now look at standard clocks with constant r» and z.

r2w? r? df r2w df

2= 2d?-(1— — (=) +2—— 22
ds™ = cdt”[—( 02)+@(ﬁ)+ cgﬁ] (3:22)
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Let fli—f = 6 be the angular velocity of the clock in RF. The proper time interval
measured by the clock is then

ds* = —Pdr? (3.23)
From this we see that
r2w2 1202 r2wh
dr = dt\/l e e 2 2 (3.24)

A non-moving standard clock in RF: § = 0 =

2,42
dr = dt\/1— rc—‘;’ (3.25)

Seen from IF, the non-rotating laboratory system, (3.25) represents the velocity
dependent time dilation from the special theory of relativity.

But how is (3.25) interpreted in RF? The clock does not move relative to
an observer in this system, hence what happens can not bee interpreted as a
velocity dependent phenomenon. According to Finstein, the fact that standard
clocks slow down the farther away from the axis of rotation they are, is due to
a gravitational effect.

We will now find the gravitational potential at a distance r from the axis.
The sentripetal acceleration is v?/r, v = rw so:

T T 1
D= —/ g(r)dr = —/ rw?dr = —=r2w?
0 0 2

We then get:

2,2 2P
U P W (3.26)

c? c?

dr =dty\/1 —

In RF the position dependent time dilation is interpreted as a gravitational
time dilation: Time flows slower further down in a gravitational field.

3.1.4 Path of photons emitted from axes in the rotating refer-
ence frame (RF)

We start with description in the inertial frame (IF). In IF photon paths are
radial. Consider a photon path with © =0, R =T with light source at R = 0.
Transforming to RF:

t=T, r=R, 0=0—-uwT

(3.27)
= r=t 0=-—wt

The orbit equation is thus 6 = —wr which is the equation for an Archimedean
spiral. The time used by a photon out to distance r from axis is t = .
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A is the area
enclosed by the
photon path or

orbit.

ds® = 0 along the
world line of a
photon

3.1.5 The Sagnac effect
IF description:

Here the velocity of light is isotropic, but the emitter/receiver moves due to the
disc’s rotation as shown in Figure 3.7. Photons are emitted/received in/from
opposite directions. Let ¢1 be the travel time of photons which move with the
rotation.

Emitter /Receiver

20

Figure 3.7: The Sagnac effect demonstrates the anisotropy of the speed of light
when measured in a rotating reference frame.

Then
= 2mr+rwt] = cty
27r (3.28)
= t1 =
c—rw

Let to be the travel time for photons moving against the rotation of the disc.
The difference in travel time is

1 1
At:tl—t2:27rr< >

c—rw ¢ +rw
_ 2mr2rw (3.29)
2 — 12,2

RF description:

2 r’w? 2 1,2 2 102 2
ds*=—(1-— =2 codt” + rodf” + 2r wdldt

- do
let 0=—
¢ dt
7202 + 2wl — (¢* — r?w?) =0
—r?w £ /(rtw? + r2c2 — riw?)
2

0=
r
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2 (3.30)

The speed of light: vy = 6 = —rw + ¢. We see that in the rotating frame RF,
the measured (coordinate) velocity of light is NOT isotropic. The difference in
the travel time of the two beams is

2rr 2rr
At = — n
c—rw c+rw
- L4Aw (3.31)
= =

(See Phil. Mag. series 6, vol. 8 (1904) for Michelson’s article)

3.2 Hyperbolically accelerated reference frames

Consider a particle moving along a straight line with velocity u and acceleration
a = g—%. Rest acceleration is a.

= a=(1-u/?)"a (3.32)
Assume that the particle has constant rest acceleration a = g. That is

du 2/.2\3/2
T = (1 —u‘/c ) qg. (3.33)
Which on integration with «(0) = 0 gives

___ o7 ax

= — =(X-k?-321? (3.34)

In its final form the above equation describes a hyperbola in the Minkowski
diagram as shown in figure(3.8).
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Figure 3.8: Hyperbolically accelerated reference frames are so called because
the loci of particle trajectories in space-time are hyperbolae.

The proper time interval as measured by a clock which follows the particle:

U2 1/2
dr = <1 - C—2> dT (3.35)

Substitution for u(7") and integration with 7(0) = 0 gives

T
T = Earcsinh (g_)
g c

or T =<sinh (g—T> (3.36)
g c
2
and X = c—cosh <£> +k
g c

We now use this particle as the origin of space in an hyperbolically accelerated
reference frame.

Definition 3.2.1 (Born-stiff motion)
Born-stiff motion of a system is motion such that every element of the system has
constant rest length. We demand that our accelerated reference frame is Born-stiff.

Let the inertial frame have coordinates (7, X,Y,Z) and the accelerated
frame have coordinates (t,z,y,2). We now denote the X-coordinate of the
“origin particle” by Xj.

X
1+ 9—20 — cosh 70 (3.37)
c c
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where 7( is the proper time for this particle and k is set to 7702. (These are

Mgller coordinates. Setting k = 0 gives Rindler coordinates).

Let us denote the accelerated frame by . The coordinate time at an ar-
bitrary point in ¥ is defined by ¢ = 79. That is coordinate clocks in ¥ run
identically with the standard clock at the “origin particle”. Let X, be the posi-
tion 4-vector of the “origin particle”. Decomposed in the laboratory frame, this
becomes

= 2 t c? t
Xo= {c_ sinhg—, < (coshg— - 1> ,0,0} (3.38)
g c g c

P is chosen such that P and P, are simultaneous in the accelerated frame . The
distance (see figure(3.9)) vector from Py to P, decomposed into an orthonormal
comoving basis of the “origin particle” is X = (0,Z,y,2) where &,y and Z are
physical distances measured simultaneously in 3. The space coordinates in 3
are defined by

(3.39)

8
I1l
2>
<
11l
\.@>
N
11l
Q>

The position vector of P is X = Xo+X. The relationship between basis vectors
in IF and the comoving orthonormal basis is given by a Lorentz transformation
in the x-direction.

Lo ozt
%= i
coshf sinhf 0 0
— (&1, Ex, . E7,) sinhf coshf 0 0O (3-40)
- T,€X,€Y,€7, 0 0 1 0
0 0 0 1
where 6 is the rapidity defined by
tanh 6 = Yo (3.41)
c
Uy being the velocity of the “origin particle”.
X
Uy = % = ctanh gt
0 ¢ (3.42)
g gt

c
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X P
cT é%
Py /4
A X
X
X,
= X

Figure 3.9: Simultaneity in hyperbolically accelerated reference frames. The

vector X lies along the “simultaneity line” which makes the same angle with the
X-axis as does €; with the cT-axis.

So the basis vectors can be written as follows

t t
€ = é’Tcoshg— +é’Xsinhg—
c c

N L. gt
€; = ersinh - + €x cosh > (3.43)

oL
I
oL

L-<

oL
I
oL

N

The equation X = Xy + X can now be decomposed in IF:

Ter+ Xéex +Yey + Zéey =
t 2 t t t
Esinhg—ér_p + c <coshg— — 1> ex + % sinh g—éT + x cosh g—é’X + yey + z€z
g c g c c c c
(3.44)
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This then, gives the coordinate transformations

t t
T:Esinhg——i-zsinhg—
g c c c
2
t t
X:C— (coshg—1> +:ccoshg—
g c c
Y=y9
J =z
T
= 97 _ <1—|—g—2)smhg—
c c
X
1—|—g—— <1+g)coshg—
c2 c2 c

Now dividing the last two of the above equations we get

T X t
9- _ <1 + 9—2) tanh 2 (3.45)
C C C

showing that the coordinate curves t = constant are straight lines in the T,X-
2 . . .
frame passing through the point T = 0, X = —%. Using the identity cosh? 6 —

<1+gc—)2(>2— (g)zz (1+i—f>2 (3.46)

showing that the coordinate curves x = constant are hypebolae in the T,X-

sinh? 0 = 1 we get

diagram.
The line element (the metric) gives :
ds*> = —c*dT?+dX* +dY?*+dZ?
= —(1+L2a + da® + dy? + d2? (3.47)
c

Note: When the metric is diagonal the unit vectors are orthogonal.
Clocks as rest in the accelerated system:

dr=dy=dz=0, ds*=—cdr?

U
c2dr? (1+ gc—f)%th?
4
qzr
dr =1+ C—Q)dt (3.48)

Here dr is the proper time and dt the coordinate time.
An observer in the accelerated system > experiences a gravitational field in
the negative x-direction. When z < 0 then dr < dt. The coordinate clocks

ds? is an
invariant
quantity
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cT

horizon

t=constant

= x=constant

Figure 3.10: The hyperbolically accelerated reference system

tick equally fast independently of their position. This implies that time passes
slower further down in a gravitational field.

Consider a standard clock moving in the z-direction with velocity v = dx/dt.
Then

2
—Adr? = - (1 + %) Adt? + dr?
gx\? v? 2 1,2
- ITN Y 4
[(1+c2) C2]cdt (3.49)
Hence
_ g\ _v?
dr = \/<1 + %) - St (3.50)

This expresses the combined effect of the gravitational- and the kinematic time
dilation.
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Covariant Differentiation

4.1 Differentiation of forms

We must have a method of differentiation that maintains the anti symmetry,
thus making sure that what we end up with after differentiation is still a form.

4.1.1 Exterior differentiation

The exterior derivative of a 0-form, i.e. a scalar function, f, is given by:

_Of o
df = M W = fug (4-1)
where w# are coordinate basis forms:
0
i =" 4.2
(55) = (42)

We then (in general) get:
oz
= w
oxv—
In coordinate basis we can always write the basis forms as exterior derivatives
of the coordinates. The differential dx* is given by

Y = dgh (4.3)

dat(dr) = dzt (4.4)

where dr’'is an infinitesimal position vector. dz* are not infinitesimal quantities.
In coordinate basis the exterior derivative of a p-form o« will have the following

component form:
1
da = 0y - Qo drO N drtt N N dat' (4.5)
p!

where , g = aziuo- The exterior derivative of a p-form is a (p + 1)-form.
Consider the exterior derivative of a p-form a.

1
da = Haﬂr-wp,#odxuo ARRRRAY: Cn (4.6)

49
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Let (da)g--., be the form components of da. They must, by definition, be

antisymmetric under an arbitrary interchange of indices.

1

da = 7)!(d_a)uo~-~upd$“0 Ao Adahr

(p+1
1
which, by (4.6) = = — dzho N - A datr

p!a[aﬂl‘“ﬂp’llo}—

C () gy = (P A D)y o]

The form equation da = 0 in component form is

Qfpiy i) = 0

Example 4.1.1 (Outer product of 1-forms in 3-space)

Also, assume that da = 0. The corresponding component equation is

O‘[i,j} =0 = Q5 — Qg = 0
Oag Doy ooy, B Oa, % B Oa, 0
oy oxr 7 Oz oxr 0z oy
which corresponds to
Vxa=0

The outer product of an outer product!

d*a = d(da)
1

dQQ = _laﬂl"‘ﬂpamuzc_lxm A dxlfl ARERNAN dlﬂup
p!
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VIV2 = G D
Since
0?2 0?2

WV1v2 =, vov1 =

= a1z oxv20x¥1

(4.7)

(4.8)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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summation over v and v which are symmetric in o, ..., 111, and antisymmetric
in the basis we get Poincaré’s lemma (valid only for scalar fields)

d’a=0 (4.15)

This corresponds to the vector equation

—,

V- (VxA) =0 (4.16)

Let a be a p-form and 3 be a g-form. Then

dlanB)=dan B+ (-1)’andb (4.17)

4.1.2 Covariant derivative

The general theory of relativity contains a covariance principle which states
that all equations expressing laws of nature must have the same form irrespective
of the coordinate system in which they are derived. This is achieved by writing
all equations in terms of tensors. Let us see if the partial derivative of vector
components transform as tensor components. Given a vector A = Are, =
AW €, with the transformation of basis given by

o 0z 0
oxv  OxV dxv

(4.18)

So that

U (A“')

sV al‘l’/
8.15” 8 /
_ 7
oxv' dzv (A )
_ oz¥ o0 [ox¥ b
oz dzv \ Oxt
oz? Ozt 4 ozY 92t
P + 14
ozY Oxr Y Jxv! OzV Oz

(4.19)

The first term corresponds to a tensorial transformation. The existence of the
last term shows that A", does not, in general, transform as the components of
a tensor. Note that A’f » will transform as a tensor under linear transformations
such as the Lorentz transformations.

The partial derivative must be generalized such as to ensure that when it is
applied to tensor components it produces tensor components.
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Example 4.1.2 (The derivative of a vector field with rotation)
We have a vector field:

A = kré,

The chain rule for derivation gives:

d 9 d¥ 0

dr - oz dr Y ox?

—

dA

L),

— ¥ (AME, + APE,,)

The change of the vector field with a displacement along a coordinate-curve is

expressed by:

0A
ox?

= A, = A E,+ A",

The change in A with the displacement in the 6-direction is:

A . .
50 = A‘feeu + Ate, g

For our vector field, with A™ = 0, we get

—

0A R o
870 = Aeﬂ €p + A9€979
=0

and since Aeﬁ = 0 because A? = kr we end up with

—

0A
—— = A%, = kré,
90 €00 = kreg g
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We now need to calculate the derivative of 5. We have:
x =rcosd y =rsind

. Y -
Using €, = 525 we can write:

50 _0x0  0yd
T 90" 990x 000y

= —rsinfée, + rcosde,

0
€, = -—— = cos e, + sinfe,

or
Gives:
€p,p = —1r cos €, — rsinbe,
= —r(cos 0e, + sinfe,) = —re,
This gives us finally:
% = —kr’e,

Thus 24 # 0 even if A = A% and A%, =

4.2 The Christoffel Symbols

The covariant derivative was introduced by Christoffel to be able to differenti-
ate tensor fields. It is defined in coordinate basis by generalizing the partially
derivative A", to a derivative written as A", and which transforms tensorially,

, W v
A, =98 0T (4.20)

T Y

The covariant derivative of the contravariant vector components are written as:
AL, = A, + AT, (4.21)

This equation defines the Christoffel symbols I'Yy,, which are also called the
“connection coefficients in coordinate basis”. From the transformation formulae
for the two first terms follows that the Christoffel symbols transform as:

/

dx¥ Ozt oz ox®  9%x®

Fa// ;7 = —, —, P P ,7, 4.22
wve g gzt Qx> MY Oz dxk Oxv (422)
The Christoffel symbols do not transform as tensor components. It is possible to

cancel all Christoffel symbols by transforming into a locally Cartesian coordinate
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system which is co-moving in a locally non-rotating reference frame in free fall.
Such coordinates are known as Gaussian coordinates.

In general relativity theory an inertial frame is defined as a non-rotating
frame in free fall. The Christoffel symbols are 0 (zero) in a locally Cartesian
coordinate system which is co-moving in a local inertial frame. Local Gaussian
coordinates are indicated with a bar over the indices, giving

I‘O}Uj =0 (4.23)
A transformation from local Gaussian coordinates to any coordinates leads to:

9z 9220

re, === _“=
wv 0x& Oz Oz’

(4.24)

This equation shows that the Christoffel symbols are symmetric in the two lower
indices, ie.

al ]'_‘al///ll/l (4'25)

},I/IVI -

Example 4.2.1 (The Christoffel symbols in plane polar coordinates)

x =rcosb, y=rsinf

r=+/x2+y2, 9:arctan%

%:cosﬁ, %:—rsinG g—gzgzcosﬁ g—;:siHH
@_,9 Oy 0 99 _ sinb 00 cosb
or oY ag or  r’ dy r

, or 0%z Or 0%y
00 = 5203t 555
oz 00 Oy 00
= cosf(—rcosf) + sinf(—rsinh)

= —r(cosf? +sinf?) = —r

90 &z 90 Iy

r%,=1% = — —
0 =L = 50 900r T oy 900r
=— Sl? 0 (—sinf) + cos? (cos )
1
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The geometrical interpretation of the covariant derivative was given by Levi-
Civita.

Consider a curve S in any (eg. curved) space. It is parameterized by J, ie.
xt = xH*(N). A is invariant and chosen to be the curve length.

The tangent vector field of the curve is @ = (da*/d\)€,. The curve passes

through a vector field A. The covariant directional derivative of the vector field
along the curve is defined as:

Vid=—-= Al ——¢, = A" u"e, (4.26)

The vectors in the vector field are said to be
connected by parallel transport along the curve
if

At u” =0

N2

A( A+AN)

Figure 4.1: Parallel transport from P to Q. The vector B= Al u? AXe,

U=

dzt
KCM (427)

According to the geometrical interpretation of Levi-Civita, the covariant direc-
tional derivative is:

. AN+ AN) — AN
Vil = A%u¥E, = lim 1A+ 2N - AR)

4.2
AXN—0 AN (4.28)

where fT”()\ + A)) means the vector A parallel transported from @ to P.
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4.3 Geodesic curves

Definition 4.3.1 (Geodesic curves)
A geodesic curve is defined in such a way that,the vectors of the tangent vector field
of the curve is connected by parallell transport.

This definition says that geodesic curves are ’as straight as possible’.

If vectors in a vector field A()) are connected by parallell transport by a dis-
placement along a vector @ , we have A", u” = 0. For geodesic curves, we then
have:

ut,u” =0 (4.29)
which is the geodesic equation.
ut, +TH u*)u” =0 4.30
N7 av
Then we are using that % = df/\y 62" =Y agv :
du# 0
% = auy =uut, (4.31)
The geodesic equation can also be written as:
dut
% + TR Y =0 (4.32)
Usual notation: " = %
w_ 4@y
H+Th, %" =0 (4.34)

By comparing eq.4.34 with the equation of motion(4.52) for a free particle (which
we deduced from the Lagrangian equations) , we find the equations to be iden-
tical. Conclusion:Free particles follow geodesic curves in spacetime.

Example 4.3.1 (vertical motion of free particle in hyperb. acc. ref. frame)
Inserting the Christoffel symbols T'%, = (1 + %7)g from example 4.5.3 into the
geodesic equation for a vertical geodesic curve in a hyperbolically accelerated refer-
ence frame, we get:

x+(1+gc—2)gt2:o
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Example 4.3.2 (Acceleration in a non-rotating reference frames(Newton))

=3y

where = %. i, j, and k are space indices. Inserting the Christoffel symbols for
plane polar coordinates (see example 4.2.1), gives:

. .9 .
Ainert = (7' - r02)gr + (9 + ;7’0)59

Example 4.3.3 (The acceleration of a particle, relative to the rotating reference frame)
Inserting the Christoffel symbols from example 4.6.1:

Grot = (7 — 10% — rw? + 17,00 + T710)E, + (0 + =70 + 9 i + T, ir)éy
r

= (i = 16° — r” = 2rw)&; + (rf + 200 + 2w)é,

—

= Ginert — (Tw? — 2rwh)é; + 27wej

The angular velocity of the reference frame, is @ = weé,. We also introduce 7 = ré,.
The velocity relative to the rotating reference frame is then:

F=ré +r%
Using the expressions in example 4.6.1, we can write this as:
¥ = 7é, + 08

Introducing orthonormal basis:

[u—y

& = ~&

<

= = & + e,

Inserting this into the expression for the acceleration, gives:

Frot = Timert +@ X (@ X 7) + 20 x ¥

We can see that the centrifugal acceleration (the term in the middle) and the coriolis
acceleration (last term) is contained in the expression for the covariant derivative.

4.4 The covariant Euler-Lagrange equations

Geodesic curves can also be defined as curves with an extremal distance between
two points. Let a particle have a world-line (in space-time) between two points
(events) P; and P,. Let the curves be described by an invariant parameter A
(proper time 7 is used for particles with a rest mass).
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The Lagrange-function is a function of coordinates and their derivatives,

L = L(z*, ") = dI—N (4.35)
) ) dA
(Note: if A =7 then & are the 4-velocity components)

The action-integral is S = [ L(z#,#*)d). The principle of extremal action
(Hamiltons-principle): The world-line of a particle is determined by the condi-
tion that S shall be extremal for all infinitesimal variations of curves which keep
P and P, rigid, ie.

A2
) L(a*, z#)d\ = 0, (4.36)
A1

where A\; and A9 are the parameter-values at P, and P». For all the variations

ct

X
Figure 4.2: Different world-lines connecting P; and P in a Minkowski diagram

the following condition applies:

We write Eq. (4.36) as
A2 A2 QL oL
) Ld) = — oz + —6zH| d\ 4.38
/A1 /Al [aazu T G x} (4.38)

Partial integration of the last term

/\2 >‘2 )\2
8—,L(53'c“d)\ = [8—,L<53:’“‘] —/ 4 (8—L> dxtdA (4.39)
A, OTH oxH A A, dA \ Ot
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Due to the conditions dz# (A1) = dz#*(A2) = 0 the first term becomes zero. Then

we have :
M ToL d (0L
p— RN — IJ’
6S N [&c“ o (8x’“)} dztd\ (4.40)

The world-line the particle follows is determined by the condition 65 = 0 for
any variation dz*. Hence, the world-line of the particle must be given by

oL d ([ OL
9o (@) =0 (4.41)

These are the covariant Euler-Lagrange equations.
The canonical momentum p,, conjugated to a coordinate x* is defined as

oL
The Lagrange-equations can now be written as
dp,, oL ) oL
—£=— = — 4.43
dx  ozr O PRT ggm (4.43)

A coordinate which the Lagrange-function does not depend on is known as a

cyclic coordinate. Hence, 6% = 0 for a cyclic coordinate. From this follows:

The canonical momentum conjugated to a cyclic
coordinate is a constant of motion

ie. p, = C (constant) if 2* is cyclic.
A free particle in space-time (curved space-time includes gravitation) has
the Lagrange function

1 1 1
L= il il = gyt = Jguid"s (4.44)

An integral of the Lagrange-equations is obtained readily from the 4-velocity
identity:

gfrﬂg:c/‘ =—¢? for a‘ particle with rest-mass (4.45)
T2t =0 for light

The line-element is:
ds? = g datda’ = g,,i"i" dA\? = 2Ld\? | (4.46)

Thus the Lagrange function of a free particle is obtained from the line-element.
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flat surface:
/Q

P

Figure 4.3: On a flat surface, the geodesic curve is the minimal distance between
P and Q

Sphere:

Figure 4.4: On a sphere, the geodesic curves are great circles.

4.5 Application of the Lagrangian formalism to free
particles

To describe the motion of a free particle, we start by setting up the line element
of the space-time in the chosen coordinate system. There are coordinates on
which the metric does not depend. For example, given axial symmetry we may
choose the angle 6 which is a cyclic coordinate here and the conjugate (covariant)
impulse Py is a constant of the motion (the orbital spin of the particle). If, in
addition, the metric is time independent (stationary metric) then ¢ is also
cyclic and p; is a constant of the motion (the mechanical energy of the particle).

A static metric is time-independent and unchanged under time reversal
(i.e. t — —t). A stationary metric changed under time reversal. Examples
of static metrics are Minkowski and hyperbolically accelerated frames. The
rotating cylindrical coordinate system is stationary.
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4.5.1 Equation of motion from Lagrange’s equation

The Lagrange function for a free particle is:

1
oL
99w (4.47)
where g, = g W(ﬁ‘). And the Lagrange equations are
oL d (oL _,
oxf  dr \oif)
oL = (149
by
oL 1
gz _ 2 N
9B~ 27w
A(OLY_(OLY
dr \9iP ) —\@9z8) ~ 9o TIpw (4.49)
= gﬂy’”jﬁﬂiy + gﬁyil/ .
Now, (4.49) and (4.48) together give:
1 s s oy
29 88" = g gy, 3" — g 5, 87 = 0. (4.50)

The second term on the left hand side of (4.50) may be rewritten making use of
the fact that ##&" is symmetric in pv, as as follows

i 1 e
g[BVhLLxMxV - 5(9 ﬂu,l/ + gﬁy’ﬂ)xuwy
(4.51)

wy 1 e
= 9p” + 509 pup + 9 pop — 9 p) 2" =0.

Finally, since we are free to multiply (4.51) through by ¢*®, we can isolate &
to get the equation of motion in a particularly elegant and simple form:

S (4.52)

where the Christoffel symbols I'},, in (4.52) are defined by

F(LV = gaﬁ(g Buw T 9 v —9 w/ﬁ)' (4‘53)

DO | =

Equation(4.52) describes a geodesic curve .
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4.5.2 Geodesic curves in spacetime

Consider two timelike curves between two events in spacetime. In fig.4.5 they
are drawn in a Minkowski diagram which refers to an inertial reference frame.

cT

non-geodetic curve between O and P

geodetic curve
v(t)

0]

tO X

Figure 4.5: Timelike curves in spacetime.

The spacetime distance between O and P (See figure 4.5) equals the proper
time interval between two events O and P measured on a clock moving in a such
way, that it is present both at O and P.

ds®> = 72
1

—c%d
Ty 2 4.54
éTo_l—/ Y (QT)dT ( )
To c

We can see that 7p_; is maximal along the geodesic curve with v(7) = 0.
Geodesic curves in spacetime have maximal distance between two points. Sim-
ilarily, let us also consider two spacelike curves:

dT
ds®> = —2dT? + dz* = [—02(—
dx

1 1 dT . 2
_ _ _p2(
s-/xo ds-/xo 1 C(d:n)dx

We see that also spacelike geodesic curves have maximal distance between two
points.

)2 + 1] da?
(4.55)
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non-geodetic curve between O and P

0 t geodetic curve Pt,

Figure 4.6: Spacelike curves in spacetime.

Example 4.5.1 (How geodesics in spacetime can give parabolas in space)
A geodesic curve between two events O and P has maximal proper time. Consider
the last expression in Section 3.2 of the propertime interval of a particle with position

x and velocity v in a gravitational field with acceleration of gravity g.

gr\2 V2
dT:dt\/(1+c—2) - =

This expression shows that the proper time of the particle proceeds faster the higher
up in the field the particle is, and it proceeds slower the faster the particle moves.
Consider figure 4.7. The path a free particle follows between the events O and P
is a compromize between moving as slowly as possible in space, in order to keep
the velocity dependent time dilation small, and moving through regions high up in
the gravitational field, in order to prevent the slow proceeding of proper time far
down. However if the particle moves to high up, its velocity becomes so large that it
proceeds slower again. The compromize between kinematic and gravitational time
dilation which gives maximal proper time between O and P is obtained for the thick
curve in fig. 4.7. This is the curve followed by a free particle between the events O
and P.

We shall now deduce the mathematical expression of what has been said above.
Timelike geodesic curves are curves with maximal proper time, i.e.

1
T:/ V =G tzvdr
0

is maximal for a geodesic curve. However the action

1 ™
J= —2/ Ldr = —/ gt dr
0 0
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The pathof the partcle

0 P

Figure 4.7: The particle moves between two events O and P at fixed points in
time. The path chosen by the particle between O and P is such that the proper
time taken by the particle betweem these two events is as large as possible.
Thus the goal of the particle is to follow a path such that its comoving standard
clocks goes as fast as possible. If the particle follows the horizontal line between
O and P it goes as slowly as possible and the kinematical time dilation is as
small as possible. Then the slowing down of its comoving standard clocks due to
the kinematical time dilation is as small as possible, but the particle is far down
in the gravitational field and its proper time goes slowly for that reason. Paths
futher up leads to a greater rate of proper time. But above the curve drawn as
a thick line, the kinematical time dilation will dominate, and the proper time
proceeds more slowly.

is maximal for the same curves and this gives an easier calculation.
In the case of a vertical curve in a hyperbolically accelerated reference frame the
Lagrangian is

1 grN\2 .0 i
L=s(-(1+5) 2+5 4.56
2 ( Tz Tz (4.56)
Using the Euler-Lagrange equations now gives
x+(1+gc—2)gt2:0

which is the equation of the geodesic curve in example 4.5.1.

Since spacetime is flat, the equation represents straight lines in spacetime. The
projection of such curves into the three space of arbitrary inertial frames gives
straight paths in 3-space, in accordance with Newton's 1st law. However projecting
it into an accelerated frame where the particle also has a horizontal motion, and
taking the Newtonian limit, one finds the parabolic path of projectile motion.
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Example 4.5.2 (Spatial geodesics described in the reference frame of a rotating disc.)
In Figure 4.8, we see a rotating disc. We can see two geodesic curves between P;
and P». The dashed line is the geodesic for the non-rotating disc. The other curve
is a geodesic for the 3-space of a rotating reference frame. We can see that the
geodesic is curved inward when the disc is rotating. The curve has to curve inward
since the measuring rods are longer there (because of Lorentz-contraction). Thus,
the minimum distance between P; and P, will be achieved by an inwardly bent
curve.
We will show this mathematically, using the Lagrangian equations. The line
element for the space dt = dz = 0 of the rotating reference frame is

Figure 4.8: Geodesic curves on a non-rotating (dashed line) and rotating (solid line)
disc.

2 702
r=df
di* = dr® + g
C
Lagrangian function: .
1., 1 r2?
RRE T
We will also use the identity:
202
72 1;«%2 -1 (4.57)

(We got this from using i - @ = 1) We see that 6 is cyclic (?)—g = 0), implying:
oL 20

= ——— = constant

06 1-— e

C

Py =

This gives:

9:(1_rw )pa_pa w?py

2 p2 2

= (4.58)
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Inserting 4.58 into 4.57:
2,2

2
w
R (4.59)

This gives us the equation of the geodesic curve between P, and P:

L G (4.60)

Boundary conditions:

Figure 4.9: Geodesic curves on a rotating disc,coordinates

r=0,r =179, ford =0

Inserting this into 4.59 gives:

2,2
w
Zﬁ: 1_|_p92

To C

(4.61)

Rearranging 4.60,using 4.61 gives:
d 2 rdr do

T w
- -

2
Tow To
0=+—5-/r%— 3 F arccos —
c r

Integrating this yields:

Example 4.5.3 (Christoffel symbols in a hyperbolically accelerated reference frame)
The Christoffel symbols were defined in Equation (4.52).

« —

I §gaﬁ(g Buy T 9 prp — 9 Wﬁ)'
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ct

LOW
HIGH
-
g
non-geodetic curve between O and P
geodetic curve
2
1
0

X

Figure 4.10: Vertical throw in the accelerated referenceframe.

In this example

i
gtt:—(1+g> C2a Jrz = Gyy = Gzz = 1

and only the term 2% contributes to I‘O‘ Thus the only non-vanishing Christoffel
y 9z y g

symbols are
1 gt
1‘\ — I‘\t _ - tt [ It
xt 29 0:1}

1 89tt

2941 O
2(1+%)

2(1+ 2(1+ %)% 2

Agu
s, =—-
tt 29 <8m>
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Example 4.5.4 (Vertical projectile motion in a hyperbolically accelerated reference frame)

2
ds? = — <1 + %) Adt? + dx® + dy? + dz? (4.62)
c

Vertical motion implies that dy = dz = 0 and the Lagrange function becomes

L:iguyi'ui'y
1 gTNZ 9.0 1.9

where the dots imply differentiation w.r.t the particle’s proper time, 7. And the
initial conditions are:
2(0) =0, #(0) = (u®,u",0,0)
= 7(07 v7 07 0)7
where, 7= (1-— v2/02)71/2.
What is the maximum height, h reached by the particle?
. . . 2
Newtonian description: %va =mgh = h = ;—g.
Relativistic description: ¢ is a cyclic coordinate = 2" = ¢t is cyclic and pg =
constant.

oL 10L gr\2 .
- -7 _ (1 —)t 4.63
PO= 550 = ¢ o c( c? (4.63)
Now the 4-velocity identity is
i-i=g,ii" =—c (4.64)
o)
1 gr\% 99 1.5 L
and given that the maximum height h is reached when & = 0 we get
h\?
(1 + gc—2> 2, =1 (4.66)

Now, since pg is a constant of the motion, it preserves its initial value throughout
the flight (i.e. po = —ct(0) = —vc) and particularly at = = h,

h\? .
(4.63) = pg = —yc = —c <1 + gc—2> toeh (4.67)

Finally, dividing equation (4.66) by equation (4.67) and substituting back in equation
(4.66) gives

h=S0r-1) (4.68)
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In the Newtonian limit (4.68) becomes

2 1 2 102 v2
h=——————+-1)|—(1l4+-—=—-1)=>h= —
g <(1—v2/02)1/2 ) g ( + 2 2 ) 2g

Example 4.5.5 (The twin “paradox”)

Eva travels to Alpha Centauri, 4 light years from the Earth, with a velocity v = 0.8¢
(v =1/0.6). The trip takes 5 years out and 5 years back. This means that Eli, who
remains at Earth is 10 years older when she meets Eva at the end of her journey.
Eva, on the other hand, is 10(1 — v%/c?)'/2 = 10(0.6) = 6 years older.

T

Eli Eva

X

|

Figure 4.11: The twins Eli and Eva each travel between two fixed events in space-
time

According to the theory of relativity, Eva can consider herself as being stationary
and Eli as the one whom undertakes the long journey. In this picture it seems that
Eva and Eli must be 10 and 6 years older respectively upon their return.

Let us accept the principle of general relativity as applied to accelerated reference
frames and review the twin “paradox” in this light.

Eva's description of the trip when she sees herself as stationary is as follows.

Eva perceives a Lorentz contracted distance between the Earth and Alpha Cen-
tauri, namely, 4 light years x1/y = 2.4light years. The Earth and Eli travel with
v = 0.8c. Her travel time in one direction is then W = 3 years. So the
round trip takes 6 years according to Eva. That is Eva is 6 years older when they
meet again. This is in accordance with the result arrived at by Eli. According to
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Eva, Eli ages by only 6 years x1/~ = 3.6 years during the round trip, not 10 years
as Eli found.

On turning about Eva experiences a force which reduces her velocity and acceler-
ates her towards the Earth and Eli. This means that she experiences a gravitational
force directed away from the Earth. Eli is higher up in this gravitational field and
ages faster than Eva, because of the gravitational time dilation. We assume that
Eva has constant proper acceleration and is stationary in a hyperbolically accelerated
frame as she turns about.

The canonical momentum p, for Eli is then(see Eqution (4.63))

2
pt:—<1—|—%> ct
C

Inserting this into the 4-velocity identity gives

2 2
P2 & (1 n %) _ (1 n %) 2, (4.69)
C C
or
1+ %

Vot (14 %)’

Now, since ¢ =0 for x = g (x2 is Eli's turning point according to Eva), we
have that

dr = dx

x
pee122)

Let 1 be Eli's position according to Eva just as Eva begins to notice the gravitational
field. That is when Eli begins to slow down in Eva’s frame.
Integration from x; to o and inserting the value of p; gives

c To\ 2 T\ 2
T1_2:—\/<1+—922> —(1+—921>
g c c
: 1 2 2
= lim m_9 = — TrH5 — x7.
g—oo C

Now setting xo = 4 and z1 = 2.4 light years respectively we get

lim 79 = 3.2 years
g—00

Eli's aging as she turns about is, according to Eva,

ATE“ =2 lim T1—2 = 6.4 years.
g—00

So Eli’s has aged by a total of 7g;; = 3.6 + 6.4 = 10 years, according to Eva, which
is just what Eli herself found.
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4.5.3 Gravitational Doppler effect

This concerns the frequency shift of light traversing up or down in a gravitational
field. The 4-momentum of a particle with relativistic energy F and spatial
velocity @ (3-velocity) is given by:

P=EQ1,@) (c=1) (4.70)

Let U be the 4-velocity of an observer. In a co-moving orthonormal basis of the
observer we have U = (1,0,0,0). This gives

U.-P=-E (4.71)

The energy of a particle with 4-momentum P measured by an observer with
4-velocity U is R L
E=-U-P (4.72)

Let Eg = —((j . 13)5 and E, = —(U' . 13),1 be the energy of a photon, measured
locally by observers in rest in the transmitter and receiver positions, respectively.
This gives'
Bs___Ba (4.73)
(U-P)s (U-P),
Let the angular frequency of the light, measured by the transmitter and receiver,
be w, and w,, respectively. We then have

ES Ea
) Sl 4.74
wS h bl wa h I ( 7 )
which gives:
U-P),
Wy = %ws (475)
(U ' P)s

For an observer in rest in a time-independent orthogonal metric we have
- dt
U-P=U'P = d_Pt (4.76)
T

where P; is a constant of motion (since ¢ is a cyclic coordinate) for photons and
hence has the same value in transmitter and receiver positions.

ds® = gudt® + gii(da')? = ds* = —dr?

dTQ = —gttdtQ = dT =/ —gttdt
dt 1

e (4.77)
which gives
Lo 1
U-P=—=P. (4.78)
. 'A4.B = AB° + A\B' + ... = g00oA°B® + g1 A'B! + ..., an orthonormal basis gives

A.B=—A°BY 1 A'B ¢ ..
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Inserting this into the expression for angular frequency (4.75) gives

(gu)s

w =
¢ (9tt)a

Ws

Note: we have assumed an orthogonal and time-independent metric, i.e. P, =
P,,. Inserting the metric of a hyperbolically accelerated reference system with

X
g = —(1+ 90—2)2 (4.79)
gives
14 &
wa = Higcjuws, (480)
2
or "
Wq — Ws 1+5]C_29 C%(xs—xa) g
= 1 gxa —_— = W ~ _QH’ (4-81)
Wg + 2 1 + 2 C

where H = x5 — x, is the difference in height between transmitter and receiver.

Example 4.5.6 (Measurements of gravitational Doppler effects (Pound and Rebka 1960))

H =~ 20m, g=10m/s?

gives
Aw 200

w  9x 100
This effect was measured by Pound and Rebka in 1960.

=2.2x 10712,

4.6 The Koszul connection

The covariant directional derivative of a scalar field f in the direction of a vector
% is defined as:

Vaf = i(f) (4.82)

Here the vector @ should be taken as a differensial operator. (In coordinate
basis, @ = u“a%)
The directional derivative along a basis vector €, is written as:

Vl, = ng (483)
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Definition 4.6.1 (Koszul’s connection coeffecients in an arbitrary basis)
In an aribitrary basis the Koszul connection coefficients are defined by

Ve, =19, (4.84)

which may also be written €, (€),) = I'jj,€q. In coordinate basis , I'},,, is reduced
to Christoffel symbols. In an arbitrary basis , '}, has no symmetry.

Example 4.6.1 (Calculating connection coefficients in a rotating reference frame in plane polar
Coordinate transformation: (7', R, © are coordinates in the non-rotating reference
frame, ¢,r, 6 in the rotating.) Corresponding cartesian coordinates:X,Y and z,y.

t=T,r=R,0=0—uwT
X =Rcos0,Y = Rsin®
X =rcos(f +wt),Y = rsin(f + wt)

(xy)
" XY) x

e% ot

Figure 4.12: The non-rotating coordinate system (X,Y) and the rotating system
(x.,y),rotating with angular velocity w

X

5 0 0X 0 Y 0 oT 0
t= 7 =

9t ot ox T otoy et or
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gives:

€ = —rwsin(f + wt)éx + rwcos(d + wt)éy + ér
L, 090X 0 0Y 0
"T o ox T orov
= cos(f + wt)é'x + sin(f + wt)éy
0X o0 9Y 0
900X 90 9y
= —rsin(f + wt)ex + rcos(d + wt)éy

o

—

€

We are going to find the Christoffel symbols, which involves differentiation of ba-
sis vectors. This coordinate transformation makes this easy, since €x, ey, er are
constant. Differentiation:

Vi = —rw? cos(f + wt)éx — rw?sin(f + wt)ey (4.85)

The connection coefficients are (see page 64)

Ve, =19, (4.86)
So, to calculate 'Y, , the right hand side of eq.4.85 has to by expressed by the
basis that we are differentiating.
By inspection, the right hand side is —rw
That is V&, = —rw?é, giving I, = —rw?.
The other nonzero Christoffel symbols:

2e,.

6 0 _Wore o L
Frt_Ft’r—?vr&ﬂ_FrG_;

'S _ 's _ 'S _
gt = Lyg = 1w, gy = —1

4.7 Connection coefficients '}, and structure coeffi-

cients ¢}, in a Riemannian (torsion free) space

The commutator of two vectors, @ and v, expressed by covariant directional
derivatives is given by:
[U, V] = Vv — Vsu (4.87)

Let @ = €, and v = ¢;,. We then have:
(€, €] = V€, — V€. (4.88)
Using the definitions of the connection and structure coefficients we get:

o = (I‘O‘W — Foju,)ea (4.89)
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Thus in a torsion free space

CO;W = I‘O‘W — FO;W (4.90)
In coordinate basis we have
. 0 . 0
eu = w s €y = anV (491)
And therefore:
L 0 0
[eﬂ’el’} [axu7 axlj]
0 0 15) 0
- (T y_ 2 7 4.92
Oxt (am”) ox? (&U“) ( )
? 0?

= 0rltdr’  Oxvoxh

Equation (4.92) shows that ¢, = 0, and that the connection coefficients in
Equation (4.90) therefore are symmetrical in a coordinate basis:

r*,, =re, (4.93)

4.8 Covariant differentiation of vectors, forms and ten-
sors

4.8.1 Covariant differentiation of a vector in an arbitrary basis

VA =V, (4"e;)

c . (4.94)
=V, Ale;, + AN eg
A" — Ay, e — MmO (4.95)
) I/axu )

where M*, are the elements of a transformation matrix between a coordinate
basis {8%} and an arbitrary basis {€,}. ( If €, had been a coordinate basis
O (AM) = AF,).

vector, we would have gotten ¢, (A*) = 5

V, A = [, (A) + A°TH €, (4.96)

Definition 4.8.1 (Covariant derivative of a vector)
The covariant derivative of a vector in an arbitrary basis is defined by:

VA= A" e, (4.97)
So:
Al = e, (A") + A°TT,,

_ N (4.98)
where V, e, = I, €,
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4.8.2 Covariant differentiation of forms

Definition 4.8.2 (Covariant directional derivative of a one-form field)
Given a vector field A and a one-form field «, the covariant directional derivative of
« in the direction of the vector # is defined by:

(Vie)(4) = va[g@j — a(VzA) (4.99)
oy AH

Let o = wt (basis form), wh(é&;) = 6%, and let A = ¢;, and @ = €3. We then
have:
(VMwh)(€r) = W [w"(er)] — w(Vaer) (4.100)
0
ul/

The covariant directional derivative V3, of a constant scalar field is zero, VAJ¥, =
0. We therefore get:

(VMwh)(er) = —wH(Vaer)
= —wH(I9€a)
— I, () (4.101)
= —I9"
=-T",
The contraction between a one-form and a basis vector gives the components

of the one-form, a(€;) = a,,. Equation (4.101) tells us that the v-component of
Vaw* is equal to —I"! 1, and that we therefore have

Vit = —T* w” (4.102)

Equation (4.102) gives the directional derivatives of the basis forms. Using the
product of differentiation gives

Vaa = Vi (a,wh)
= V(o)W + o, Vaw! (4.103)

= ex(ay)w! — auF‘f/)\g”

Definition 4.8.3 (Covariant derivative of a one-form)
The covariant derivative of a one-form a = «a,w" is therefore given by Equation
(4.104) below, when we let ;1 — v in the first term on the right hand side in (4.103):

Vaa = (63 (o) — a, T | Jw” (4.104)
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The covariant derivative of the one-form components ¢, are denoted by «,.) and
are defined by
Vaa = aypw” (4.105)

It then follows that

ayn = ex(ay) — au Ity (4.106)

It is worth to note that I'? | in Equation (4.106) are not Christoffel symbols. In
coordinate basis we get:
iy = ay ) — I (4.107)

where Iy  =T" | are Christoffel symbols.

4.8.3 Generalization for tensors of higher rank

Definition 4.8.4 (Covariant derivative of a tensor)
Let A and B be two tensors of arbitrary rank. The covariant directional derivative
along a basis vector €, of a tensor A @ B of arbitrary rank is defined by:

VWA ®B) = (WA) ® B+ A® (V,B) (4.108)

We will use (4.108) to find the formula for the covariant derivative of the com-
ponents of a tensor of rank 2:

VoS = Vo (Spww! ®@ w”)
= (VQSW,)@M ®w” + S,uu(vagu) ®w’ + S,uygu X (vagy) (4.109)
= (Suva = Spulq = SupT e )t ©@ W

where Sy, o = €,(Suw). Defining the covariant derivative S, by

VoS = S ® w” (4.110)
we get
Suvia = Suva — Sa T — SusT g (4.111)
For the metric tensor we get
Guvia = Gura = 95T ha = 9usT e (4.112)

From

Guv = € - €y (4.113)
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we get:
Guva = (Va€pn) - € + € (Vaey)
= I‘ﬂwe_ﬁ ey te- Fﬁyaeﬁ
- gﬁVFﬁua + guﬁréja

This means that
Juvia = 0

So the metric tensor is a (covariant) constant tensor.

4.9 The Cartan connection

Definition 4.9.1 (Exterior derivative of a basis vector)

P d— 14 b4 (0%
deuzfuaey(@g

Exterior derivative of a vector field:
dA = d(é,A*) = &, ® dA” + AFde,
In arbitrary basis:

C_iAI/ — é»)\(Au)g)\

(In coordinate basis, €)(AY) = %(A”) =A%)
giving:

Definition 4.9.2 (Connection forms £2))
The connection forms ", are 1-forms, defined by:

de, =&, ®Q",
Fljua e, QWY =€, ® Fl;lawa =é,® QVM
QI/ — I‘V wa

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

(4.122)
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The exterior derivatives of the components of the metric tensor:

gy = d(E, - &) = &, - d&, + &, - dé, (4.123)

where the meaning of the dot is defined as follows:

Definition 4.9.3 (Scalar product between vector and 1-form)
The scalar product between a vector @ and a (vectorial) one form A = Ahe, @ w
is defined by:

v

- A=u*Al (€, - €y)w” (4.124)

Using this definition, we get:

dguw = (&, -, + (¢, - &)
agu (u 2R ( 7)—u (4.125)
_ A Y

- gﬂ)\QV + gl/’)/Qu

Lowering an index gives
dgu =2, +2,, (4.126)

In an orthonormal basis field there is Minkowski-metric:

9o = Npw (4.127)
which is constant. Then we have :
dgpr = 0= Qpp = =Ly (4.128)
where we write Q,;, = F[,ﬂ@&_)d. It follows that I';pa = —T'ppa-
It also follows that
t i — T — T
I_‘ 17 _Fti] F’lt] - tj (4 129)
ri. — 1 '
jk ik

Cartans 1st structure equation (without proof):

1
d_wp = §CPMV£M A gy

1 14
=5 — )" Aw (4.130)
= _prugﬂ A gl/

= -0, Aw”

dw? = -0 Nw”| and |dw” =T7 w"Aw” (4.131)
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In coordinate basis, we have w” = dz”.

Thus, dw” = PP = 0.

We also have ¢’ w = 0, and C1 is reduced to an identity.This formalism can
not be used in coordinate basis!

Example 4.9.1 (The Cartan-connection in an orthonormal basis field in plane polar coordinz:

ds® = dr® + r*d6”
Introducing basis forms in an orthonormal basis field (where the metric is g =
966 = 1) ) )
ds® = grrw” @ W' + g’ W’ =w' @ W +wf W
= W' = dr,o’ = rdy

Exterior differentiation gives:

R - 1 . N
dw" = d*r = 0,dw’ = dr Ndf = —w" AW’
r
C1:
dwf = -0 AW
7 P 7 6
=AW - QAW
We have that dw” = 0 , which gives:
i 0
Q=T w (4.132)
since gé /\gé =0. (Q@zo because of the antisymmetry Q;, = —Qﬂ,;.)
We also have: dw’ = —%ge Aw". Cl:
~—
=0
Q% =T% 3w’ + T (4.133)
giving Féfé = %
We have: 7, = —0. Using equations 4.132 and 4.133 we get:
% =0
. 1
= g5 =~

giving O, = —00, = — 10,

r=
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Curvature

5.1 The Riemann curvature tensor

Figure 5.1: Parallel transport of A

The covariant directional derivative of a vector field A along a vector 4 was
defined and interpreted geometrically in section 4.2, as follows

(5.1)

Let fYQ p be the parallel transported of A from Q to P. Then to first order in
A\ we have: A’QP = Ap + (VzA)pAX and

81
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e

Figure 5.2: Parallel transport of a vector along a triangle of angles 90° is rotated

90°
Apg = Ag — (VgA)gAN
To second order in A\ we have:
Apg = (1 — VgA\+ %vﬁvﬁmx)?)%
If A pq is parallel transported further on to R we get
Apor = (1 — Vg + %vﬁvﬁ(m)%
(1= VAN + %vgvﬁ(Ax)Z)A'R
If we parallel transport A around the whole polygon we get:
Aporstp = (1 + Vg + %vﬁvﬁ(m)%
(14 VzAN+ %vgvg(mf)
(L= Vg (AN?) - (1 - VaAN+ %vﬂvﬁ(m)%
(1= VAN + %vgvg(m)m’p
Calculating to 2. order in A\ gives:

Aporstp = Ap + ([Va, V] = Vi) (AN Ap

(5.2)

(5.6)
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S
(Viaar® — Vgari) AX
F(T)AN = [, 7]AN
Vaarv
T
Upr AN
(P)A/\ ﬁpQA)\ vﬁAAUAA
R
VzA fo
- u(Q)A
2O u(Q)AN
P T(P)AX Q
A A+ AN

Figure 5.3: Geometrically implied curvature from non-zero differences between
vectors along a curve (parameterized by A) and their parallel transported equiv-
alents

There is a variation of the vector under parallel transport around the closed
polygon:

§A = Apgrsrr — Ap = ([Va, Vil — Vi) Ap(AN)? (5.7)

We now introduce the Riemann’s curvature tensor as:

—,

R( a/_l" u, U) = ([vﬁv vﬁ] - v[ﬂ',ff])(A) (58)

The components of the Riemann curvature tensor is defined by applying the
tensor on basis vectors,

R;;aﬁgﬂ = ([VOH V,B] - V[gmgﬁ})(é’\,/) (59)
Anti-symmetry follows from the definition:
R‘lelﬁoz = _Rl;/aﬁ (510)

The expression for the variation of A under parallel transport around the poly-
gon, Eq. (5.7), can now be written as:
SA=R( ,A i 7)(AN?
=R( ,A"E,,u"E,,v7&5)(AN)?
=GR AT - (AN)? (5.11)

1 g v (0% (0%
= §euR‘f1aﬂA (u? — uPo®)(AN)?
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UAN

AS

TUAN

The area of the parallellogram defined by the vectors €A\ and TAN is
AS =i x T(AN)2.

Using that

we can write Eq. (5.11) as:

vas

5A :%A”R“ NG B (5.12)

The components of the Riemann tensor expressed by the connection- and structure-
coefficients are given below:
éuR’iaﬁ = [Va, Vglé, — Vie..a51€v
=(VoaV3—VgVy — cpaﬁv,,)gu
=VaVgé, —VgVae, — c”aﬂv,,gy
(Kozul-connection) = VoIY) &, — VgI", &, — ¢ 5, 8, (513)
= (VQF“VB)&?M + F“VBVOEM
— (VgI'h,)e, —T'h, N ge, — cpaﬂl“‘f,péu
= €a(F‘f1B)é’# + FPVBF’;)aé'M

- gﬁ (Flf/a)é;i B Fpuarupﬁé'lt - cpaﬂrlf/pg;t .

This gives (in arbitrary basis):

Rlop = €a(l’5) = €3(I"0) (5.14)
+ T Tk — 0, I — & T

In coordinate basis eq. (5.14) is reduced to:

R’lf/ocﬁ = FMVB,OC - Plf/oc,ﬁ + prﬁrupa - FpuaF};ﬁ ) (515)

where I' ; =T are the Christoffel symbols.
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Due to the antisymmetry (5.10) we can define a matrix of curvature-forms

1
R = §R“aﬂga A WP

— 14

Inserting the components of the Riemann tensor from eq. (5.14) gives

R 1
R, = (€a(T5) + T 510 = 50T A w’

The connection forms:

o — TH «
Qu_ryag

Exterior derivatives of basis forms:

Exterior derivatives of connection forms (Cl: dw” = —Qf A w®) :

dQ, = dr'y s AW’ + T, dw”

V=

1
= e, (" Jw* Aw® — icpaﬁf‘“ypgo‘ A w?

The curvature forms can now be written as:

Rb, = dOH, + Q5 A D,

This is Cartans 2nd structure equation.

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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5.2 Differential geometry of surfaces

Figure 5.4: The geometry of a surface. We see the normal vector and the unit
vectors of the tangent plane of a point on the surface.

Imagine an arbitrary surface embedded in an Euclidian 3 dimensional space.
(See figure 5.4). Coordinate vectors on the surface :

N R
€y = 8—u,€v = 8_’[) (522)

where u and v are coordinates on the surface.
Line element on the surface:

ds? = g, datdz” (5.23)
with 2! = u and 22 = v.
(1st fundamental form)
The directional derivatives of the basis vectors are written

é:“ﬂ’ = FO/:yé)a + ij]\_f, a=1,2 (5.24)

Greek indices run through the surface coordinates, N is a unit vector orthogonal
to the surface.
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The equation above is called Gauss’ equation. We have: K,, = €, - N. In

. . - o 52 o 82 o
coordinate basis, we have €, = 55— = 5057 = €vu- 1t follows that

Ku =Ky, (5.25)

Let « be the unit tangent vector to a curve on the surface, parametrised by A.
Differentiating « along the curve:
di

e ut!, u”é, + K, utu” N (5.26)

2nd fundamental form

We define x4 and xy by:

du . =
o e + kNN (5.27)
kg is called geodesic curvature. xy is called normal curvature (external curva-

ture). kg = 0 for geodesic curves on the surface.

- " v ﬂ—»
kg€ = ut u”e, = Vgu

kN = Kufu” (5.28)
di -
And :ky = — - N
nd Ky 5\

We also have that @- N = 0 along the whole curve. Differentiation gives:

di - dN
el 0 — = 2
i\ N+ 5\ 0 (5.29)
gives:
. dN

which is called Weingarten’s equation.

kg and K together give a complete description of the geometry of a surface
in a flat 3 dimensional space. We are now going to consider geodesic curves
through a point on the surface. Tangent vector @ = u*€,, with @-u = g, utu” =
1. Directions with maximum and minimum values for the normal curvatures are
found, by extremalizing « under the condition g, u*u” = 1. We then solve the
variation problem 0 F' = 0 for arbitrary u*, where F' = K, u*u” —k(g, utu”—1).
Here k is the Lagrange multiplicator. Variation with respect to u* gives:

OF = 2(K — kgpw)u” éu
0F = 0 for arbitrary éu* demands:

(K — kgu)u” =0 (5.31)

For this system of equations to have nonzero solutions, we must have:

det(K,, — kgu) =0 (5.32)
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K1 —kgin K2 —kgia|

=0 5.33
K1 — kgo1 Koo — kgao (5:33)

This gives the following quadratic equation for k:

k2det(guw) — (g11K2 — 2912K12 + 922 K11)k + det(),,) = 0 (5.34)
(K symmetric K19 = Ko1)

The equation has two solutions, ki and ko. These are the extremal values of k.
To find the meaning of k, we multiply eq.5.31 by u*:

0= (KW - kguu)uuuy
= MVUNUV - kgw/u#uy (535)

= KN — k=k==kKN
The extremal values of ky are called the principal curvatures of the surface.

Let the directions of the geodesics with extreme normal curvature be given by
the tangent vectors « and v.Eq.5.31 gives:

Ku” = kgyu” (5.36)
We then get:

K pu’vt = kigu’o?

K v = kaguv”ut = ka(d - v)

i _ 7-7) = Vol — Yyt
gives (k1 — ko) (t - ¥) = K (u”v" — v"ut) (5.37)
= 2KWu[”v“]
K, is symmetric in p and v. So we get:(ky — ko) (@ - ¥) = 0. For ki # ko we
have to demand - = 0. So the geodesics with extremal normal curvature, are
orthogonal to each other.
The Gaussian curvature (at a point) is defined as:

K= KN1 - KN2 (538)

Since xny1 and ko are solutions of the quadratic equation above, we get:

K det(K,.)

= det(gm) (5.39)
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5.2.1 Surface curvature, using the Cartan formalism

In each point on the surface we have an orthonormal set of basis vectors. Greek
indices run through the surface coordinates (two dimensional) and Latin indices
through the space coordinates (three dimensional):

o= (1,63, N), ¢, ={é, e} (5.40)

Using the exterior derivative and form formalism, we find how the unit vectors

on the surface change:
de;, = €, ®
coter (5.41)
— @0+ Ne0b,

where QF = I',ow® are the connection forms on the surface, i.e. the intrinsic
connection forms. The extrinsic connection forms are

03, = Kyaw® , Q% = K#w® (5.42)

We let the surface be embedded in an Euclidean (flat) 3-dimensional space. This
means that the curvature forms of the 3-dimensional space are zero:

RY%, =0=d 9%+ Q9 12 (5.43)
which gives:
Ry, =0=dQ, + Y, AQS, + QA0

N 5.44
= R, + Q5N (544
where R/, are the curvature forms of the surface. We then have:
1 «
S Rapu” A’ = - N O, (5.45)

Inserting the components of the extrinsic connection forms, we get: (when we
remember the anti symmetry of o and 8 in R" ﬁ)

R“ of = =K K3 — K" K,,a (5.46)
We now lower the first index:
Ruua,b’ = KuaKz/B - K#BKVOC (547)

R, qp are the components of a curvature tensor which only refer to the dimen-
sions of the surface. In particular we have:

Ry212 = K11 K92 — K12K91 = det K (5.48)

We then have the following connection between this component of the Riemann
curvature tensor of the surface and the Gaussian curvature of the surface:
det Ky Riogio

det g, ~ det v

K= KN1*RKN2 = (549)

Since the right hand side refers to the intrinsic curvature and the metric on the
surface, we have proved that the Gaussian curvature of a surface is an intrinsic
quantity. It can be measured by observers on the surface without embedding the
surface in a three-dimensional space. This is the contents of Gauss’ theorema
egregium.
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5.3 The Ricci identity

-,

Gl s A = (Vs = VsV — Vi 3 () (5.50)

In coordinate basis this is reduced to

enlt, gAY = (Al — A e, (5.51)
where
A’faﬁ = (A‘;‘ﬁ);a (5.52)
The Ricci identity on component form is:
A”R“Vaﬁ = A‘fﬁa - A’faﬁ (5.53)
We can write this as:
- 1
d’A = §R‘f1aﬂA”e_/} QW AWP (5.54)

This shows us that the 2nd exterior derivative of a vector is equal to zero only
in a flat space. Equations (5.53) and (5.54) both represents the Ricci identity.

5.4 Bianchi’s 1st identity

Cartan’s 1st structure equation:

dwt = —-08 Nw” (5.55)
Cartan’s 2nd structure equation:
RH =d Ok + QX AQ), (5.56)

Exterior differentiation of (5.55) and use of Poincaré’s lemma (4.15) gives:
(d* w = 0)

0=dO" Nw” — Q4 Adw (5.57)
Use of (5.55) gives:

A AW + Q4 AW =0 (5.58)
From this we see that

(A + QA D) Aw” =0 (5.59)

We now get Bianchi’s 1st identity:

R AW’ =0 (5.60)
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On component form Bianchi’s 1st identity is

1
iR‘flaﬂga Aw? Aw?” =0 (5.61)
N

R,

The component equation is: (remember the anti symmetry in o and )

R =0 (5.62)

or
Ry Rl Bl = 0 (5:63
where the anti symmetry R/ 5, = _Rl:/aﬁ has been used. Without this anti

symmetry we would have gotten six, and not three, terms in this equation.

5.5 Bianchi’s 2nd identity
Exterior differentiation of (5.56) =

dRY, = RAAQ, — QAN AD, — QN AR, + Q5 A, AL,

T (5.64)
=RAAD, - AR,
We now have Bianchi’s 2nd identity as a form equation:
dRY+ QN AR, —RA\ A, =0 (5.65)
As a component equation Bianchi’s 2nd identity is given by
R’f/[aﬁ;ﬂ =0 (5.66)
Definition 5.5.1 (Contraction)
‘Contraction’ is a tensor operation defined by
R,5 = R‘fjuﬂ (5.67)

We must here have summation over . What we do, then, is constructing a new
tensor from another given tensor, with a rank 2 lower than the given one.

The tensor with components R,z is called the Ricci curvature tensor.
Another contraction gives the Ricci curvature scalar, R = R/),.
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Riemann curvature tensor has four symmetries. The definition of the Rie-
mann tensor implies that R af = —R‘fjﬂa
Bianchi’s 1st identity: leua,@] =0
From Cartan’s 2nd structure equation follows

_ A
Euu_@pu—’_QuAAQu

R (5.68)

=R

pvaf — T tvpaf

By choosing a locally Cartesian coordinate system in an inertial frame we get
the following expression for the components of the Riemann curvature tensor:
1
R uvaf — i(guﬁ,ua — GpawvB t Guaus — gyﬁ,m) (5.69)
from which it follows that ;.3 = Ragu,- Contraction of 1 and « leads to:

Rolé/aﬁ = aﬁau

(5.70)
= R,,g = Rgl,

i.e. the Ricci tensor is symmetric. In 4-D the Ricci tensor has 10 independent
components.



Chapter 6

Einstein’s Field Equations

6.1 Energy-momentum conservation

6.1.1 Newtonian fluid

Energy-momentum conservation for a Newtonian fluid in terms of the divergence
of the energy momentum tensor can be shown as follows. The total derivative
of a velocity field is

Dy 0v -

—=—+4+ - V)¥ 6.1

D=9 TV (6.1)

g—f is the local derivative which gives the change in ¢ as a function of time

at a given point in space. (¥ - 6)17 is called the convective derivative of ¥. It
represents the change of ¥ for a moving fluid particle due to the inhomogeneity
of the fluid velocity field. In component notation the above become

Dvt o O’

= J — 2
Dt~ ot " Ol (6.2)
The continuity equation
dp L dp | Apv') _
2 +V-(pt) =0 or o + e 0 (6.3)
Euler’s equation of motion (ignoring gravity)
Dv - o’ - Ov' dp
— ==V J— ) = ——— 6.4
"Dt poor p(6t+vax9> ox (64)

The energy momentum tensor is a symmetric tensor of rank 2 that
describes material characteristics.

T()O TOl T02 TOS
TlO Tll T12 T13
T20 T21 T22 T23
T30 31 32 33

T = (6.5)

93
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T represents energy density.

T represents momentum density.
T% represents pressure (7% > 0).
T% represents stress (T% < 0).

T% represents shear forces (i # j).

Example 6.1.1 (Energy momentum tensor for a Newtonian fluid)

TOO =) T’iO — pUi
g o g (6.6)
T = pv*'v? + po¥
where p is pressure, assumed isotropic here. We choose a locally Cartesian coordinate
system in an inertial frame such that the covariant derivatives are reduced to partial
derivatives. The divergence of the momentum energy tensor, T, has 4 components,
one for each value of p.
The zeroth component is
% =T% =T% + T
_dp a(pv?) (6.7)

ot oz?

which by comparison to Newtonian hydrodynamics implies that T?l’j = 0 is the
continuity equation. This equation represents the conservation of energy.
The ith component of the divergence is
Ty =TG+T7
d(pvt) N A(pviv? + pdid)

Y oxJ (6.8)
Ot 0p  Op? ;ovt - dp
P Ve TV o T ow T an
now, according to the continuity equation
9(pv') _ Op
oxt ot
’ o' -0p 0p ovt Op
= TW — U g J i i
O T T T Fr v 6.9)
B Dv? 4 dp
PDr T ox
» Dv' dp
" =0= = ——
v P"Di ox’

which is Euler’'s equation of motion. It expresses the conservation of momentum.
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The equations 7%, = 0 are general expressions for energy and momentum
b
conservation.

6.1.2 Perfect fluids

A perfect fluid is a fluid with no viscosity and is given by the energy-momentum
tensor
T#V = (pCQ +p)u,uu1/ +pguy (610)

where p and p are the mass density and the stress, respectively, measured in the
fluids rest frame, u,, are the components of the 4-velocity of the fluid.

In a comoving orthonormal basis the components of the 4-velocity are u/ =
(¢,0,0,0). Then the energy-momentum tensor is given by

pc2 0 0 0

10 pooO

T,,_OOP0 (6.11)
0 00 p

where p > 0 is pressure and p < 0 is tension.
There are three different types of perfect fluids that are useful.

1. dust or non-relativistic gas is given by p = 0 and the energy-momemtum
tensor T}, = pc?u,u,.

2. radiation or ultra-relativistic gas is given by a traceless energy-momemtum
tensor, i.e. 7%, = 0. It follows that p = £pc?.

3. vacuum energy: If we assume that no velocity can be measured relatively
to vacuum, then all the components of the energy-momentum tensor must
be Lorentz-invariant. It follows that T}, oc g,,. If vacuum is defined as a
perfect fluid we get p = —pc? so that T = PG = —pCQgW.

6.2 Einstein’s curvature tensor

The field equations are assumed to have the form:

space-time curvature o« momentum-energy tensor

Also, it is demanded that energy and momentum conservation should follow as

a consequence of the field equation. This puts the following constraints on the

curvature tensor: It must be a symmetric, divergence free tensor of rank 2.
Bianchi’s 2nd identity:

le/a,@;a + le/oa;ﬁ + R'L:/,Bo;a =0 (612)
contraction of u and a =
B M 5 _
R vuBio R vuosB R vBou 0 (6.13)

Rypo = Ryoipt+ R,
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further contraction of v and o gives

o~ Bop+ Rp, =0

ofB:u
%o — R 5+ R, =0 (6.14)
2R, = Ry

Thus, we have calculated the divergence of the Ricci tensor,

o 1

Now we use this expression together with the fact that the metric tensor is co-
variant and divergence free to construct a new divergence free curvature tensor.

- 1
Keeping in mind that (¢%R)., = 9% R., we multiply (6.16) by gﬂa to get
g g1iv); a1

- 1
g% B%O'_g%iR%ﬁ =0

1 (6.17)
B B —
(gaRgﬁ);U B 5 (g aR);ﬁ =0
interchanging ¢ and (3 in the first term of the last equation:
(), -, =
s 2\ B
(6.18)

= (Rﬁa —~ %5@3) =0
B
since g"aR%:&’aR’%:R%. So that Rﬁa — %5%]% is the divergence free curvature
tensor desired.
This tensor is called the Einstein tensor and its covariant components are
denoted by E,3. That is

1

NOTE THAT: E') = 0 — 4 equations, giving only 6 equations from E s
which secures a free choice of coordinate system.

6.3 Einstein’s field equations

Einstein’s field equations:

E,, = kT, (6.20)
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or
1
R, — igw,R = kT (6.21)
Contraction gives:
1
R— -4R = kT , where T = T"
2 " (6.22)
R=—kT
1
Ry, = §g#,,(/<cT) + kT, (6.23)
Thus the field equations may be written in the form
1
Ry = k(T — EgWT) (6.24)
In the Newtonian limit the metric may be written
2 20\ .9 2 2 2
ds* = — 1+C—2 dt® + (1 + hy;)(dx® + dy® 4+ dz7) (6.25)

where the Newtonian potential |¢| < c?. We also have Tyg > Thy, and T = —Tpo.
Then the 00-component of the field equations becomes

Roo ~ gTOO (6.26)
Furthermore we have
Roo = Ruouo = Rimo
= FZAoo,z‘ - Fim,o
= 3;:20 = C%V% (6.27)

Since Ty ~ pc? eq.(6.26) can be written VZ¢ = rctp. Comparing this equation

with the Newtonian law of gravitation on local form: V2¢ = 47Gp, we see that
8

R = A -

In classical vacuum we have : T}, = 0, which gives

Eu=0 or R, =0. (6.28)

These are the “vacuum field equations”. Note that R,, = 0 does not imply
Ryvap = 0.
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Digression 6.3.1 (Lagrange (variation principle))
It was shown by Hilbert that the field equations may be deduced from a variation
principle with action

/ Ry/—gd'z , (6.29)

where R./—g is the Lagrange density. One may also include a so-called cosmological
constant A:

/ (R4 2A)\/—gd*x (6.30)

The field equations with cosmological constant are

1
R/“, — §gWR + Aguy = H’T/“/ (631)

6.4 The “geodesic postulate” as a consequence of the
field equations

The principle that free particles follow geodesic curves has been called the
“geodesic postulate”. We shall now show that the “geodesic postulate” follows
as a consequence of the field equations.

Consider a system of free particles in curved space-time. This system can
be regarded as a pressure-free gas. Such a gas is called dust. It is described by
an energy-momentum tensor

™ = putu” 6.32
P

where p is the rest density of the dust as measured by an observer at rest in the
dust and u* are the components of the four-velocity of the dust particles.

Einstein’s field equations as applied to space-time filled with dust, take the
form

1
R — §g’wR = rput'u” (6.33)

Because the divergence of the left hand side is zero, the divergence of the right
hand side must be zero, too

(puf'u”),, =0 (6.34)
or
(pu”ut),, =0 (6.35)

we now regard the quantity in the parenthesis as a product of pu” and u*. By
the rule for differentiating a product we get

(pu”)put + pu”ut, =0 (6.36)
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Since the four-velocity of any object has a magnitude equal to the velocity of
light we have

uut = —c? (6.37)
Differentiation gives
(uput),, =0 (6.38)
Using, again, the rule for differentiating a product, we get
Uyt + uput, =0 (6.39)

From the rule for raising an index and the freedom of changing a summation
index from « to pu, say, we get
— — (67 — o _ o
um,,u“ = uuu = 91" Uty = uag " Uy = uqu W= u#u’fy (6.40)

Thus the two terms of eq.(6.39) are equal. It follows that each of them are equal
to zero. So we have

uyut, =0 (6.41)
Multiplying eq.(6.36) by u,, we get
(pu”) wuyu” + puuyut, =0 (6.42)

Using eq.(6.37) in the first term, and eq.(6.41) in the last term, which then
vanishes, we get

(pu”) =0 (6.43)
Thus the first term in eq.(6.36) vanishes and we get

pu”ut;, =0 (6.44)
Since p # 0 we must have

u’ut, =0 (6.45)

This is just the geodesic equation. Conclusion: It follows from FEinstein’s
field equations that free particles move along paths corresponding to geodesic
curves of space-time.
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The Schwarzschild spacetime

7.1 Schwarzschild’s exterior solution

This is a solution of the vacuum field equations E,,, = 0 for a static spherically
symmetric spacetime. One can then choose the following form of the line element
(employing units so that c=1),

ds? = =22 qt? 4 200 @r? 4 12402
7.1
dO? = db? + sin? 0dg? (7.1)
These coordinates are chosen so that the area of a sphere with radius r is 47r2.
Physical distance in radial direction, corresponding to a coordinate distance
dr,is dl, = \/grrdr = P dr.
Here follows a stepwise algorithm to determine the components of the Ein-
stein tensor by using the Cartan formalism:

1. Using orthonormal basis (ie. solving Ej;; = 0) we find

gf =Mt . W =P gé =rdf , gé = rsin 0dg¢ (7.2)
2. Computing the connection forms by applying Cartan’s 1. structure equa-

tions
dwt = = N w” (7.3)

d_wlE = e“d/dr A dt

= e/ e P’ A e Wt

- (7.4)
— _e—,@a/gt/\gr
— _fo /\QTA‘
fo = e_’Bo/gE + frw" (7.5)
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3. To determine the f-functions we apply the anti-symmetry

8o =L
This gives:
Q. = —Q"% = —le_ﬁwq;

N 1 N
Qe = —Qd) = ——cot 9g¢
¢ T

O, = +9; = ¢ ol

R ~ 1 ~
0 -8, ,0
2, = -0 = -~

(7.6)

(7.7)

4. We then proceed to determine the curvature forms by applying Cartan’s

2nd structure equations
i g0l i g
R = de, + O £ 05,

which gives:

Rl=—e (o +a? — o/ f)w AW
Efé _ _%e—Zﬁalgi At

Efqg = — L 6_25a’g£ A g‘i’

Efé _ %6—2,@5/@: A gé

Ei{) = i 283" A w?

Eéq; = %2(1 — e )l A w?

5. By applying the following relation

R :—R" & p P

Pat b6
we find the components of Riemann’s curvature tensor.
6. Contraction gives the components of Ricci’s curvature tensor

R» = R%,

péw

7. A new contraction gives Ricci’s curvature scalar

— ph
R:Rﬂ

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)
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8. The components of the Einstein tensor can then be found

1
Eﬂl; = Rﬂf, — 5?7[“9]% s (713)

where 1,, = diag(—1,1,1,1). We then have:

By = —e ﬁﬂ’+r—2(1—e %)
2 _ 1 _
Eff = ;6 260/ — ﬁ(l — € 25) (714)
/ /
— 2 a B
Eéé:Eq;que 2/8(0//—}—0/ —O/,B/—F?—?)

We want to solve the equations Ej;; = 0. We get only 2 independent
equations, and choose to solve those:

E{i =0 and ETA,: =0 (7.15)
By adding the 2 equations we get:
2
= e (B +a)=0
r

= (a+8)=0=a+p=K; (const) (7.16)

We now have:
ds? = —e*dt® + 2P dr? + r2d0? (7.17)

By choosing a suitable coordinate time, we can achieve
Ki=0=a=-0

Since we have ds? = —e2?dt? + e 2%dr? + r2dQ?, this means that g, =
— % We still have to solve one more equation to get the complete solution,
and choose the equation Ej = 0, which gives

2

1
—e*wﬂ’ +
,

r2

(1-e2%)=0

This equation can be written:

1d _
ﬁ%[r(l — € 2'6)] = 0

sr(l—e ) = K, (const)

(7.18)

If we choose Ko =0 we get § =0 giving o = 0 and

ds? = —dt* + dr* + r?dQ? (7.19)
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which is the Minkowski space-time described in spherical coordinates. In
general, Ky #0and 1 —e 20 = £2 = K 4jying

r r?

K
2 =2 =1 2
r
and " 02
2 _ 2 T 2 102

r

We can find K by going to the Newtonian limit. We calculate the gravita-
tional acceleration ( that is, the acceleration of a free particle instantanously at
rest ) in the limit of a weak field of a particle at a distance r from a spherical

mass M. Newtonian: ) o
d*r M
=—=—— 7.21
9= a2 r2 (7:21)
We anticipate that » >> K. Then the proper time 7 of a particle will be
approximately equal to the coordinate time, since dr = /1 — %dt

The acceleration of a particle in 3-space, is given by the geodesic equation:

2
ddx: + F‘fxﬁuo‘uﬂ =0

T e (7.22)
ut =

For a particle instantanously at rest in a weak field, we have dr =~ dt. Using
u* = (1,0,0,0), we get:

9="35 = -7, (7.23)
This equation gives a physical interpretation of I'";, as the gravitational acceler-
ation. This is a mathematical way to express the principle of equivalence: The
gravitational acceleration can be transformed to 0, since the Christoffel symbols
always can be transformed to 0 locally, in a freely falling non-rotating frame,
i.e. alocal inertial frame.

1 0Gat  O0Gat  Ogu
Pu=59" 50 T ~ane)
M
Ira =0 =0
__ 1 9
2gyy Or
K. Ogu K
— (1 -2y, 2 7.24
Gt ( r ) or ) ( )
K GM
g=Tu=-55=""5
gives K =2GM
2GM
or with ¢: K =

c2
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Then we have the line element of the exterior Schwarzschild metric:

2GM dr?
d82 = —(1 — 2 )Cth2 + m + 7“2dQ2 (725)
c2r
Rg = 2fQM is the Schwarzschild radius of a mass M.

Weak field: » >> Rg.

For the earth: Rg ~ 0.9cm

For the sun: Rg ~ 3km

A standard clock at rest in the Schwarzschild spacetime shows a proper time 7:

dr::,/l-—fiidt (7.26)
T

So the coordinate clocks showing t, are ticking with the same rate as the stan-
dard clocks far from M. Coordinate clocks are running equally fast no matter
where they are. If they hadn’t, the spatial distance between simultanous events
with given spatial coordinates, would depend on the time of the measuring of
the distance. Then the metric would be time dependent. Time is not running
at the Schwarzschild radius.

Definition 7.1.1 (Physical singularity)
A physical singularity is a point where the curvature is infinitely large.

Definition 7.1.2 (Coordinate singularity)
A coordinate singularity is a point (or a surface) where at least one of the components
of the metric tensor is infinitely large, but where the curvature of spacetime is finite.

Kretschmann’s curvature scalar is RWQBRWO‘/@ . From the Schwarzschild metric,
we get: -
48G*M
—5 (7.27)
which diverges only at the origin. Since there is no physical singularity at
r = Rg, the singularity here is just a coordinate singularity, and can be re-
moved by a transformation to a coordinate system falling inward. (Eddington -
Finkelstein coordinates, Kruskal - Szekers analytical extension of the description
of Schwarzschild spacetime to include the area inside Rg).

Rm/a,@Rm/aﬁ =

7.2 Radial free fall in Schwarzschild spacetime

The Lagrangian function of a particle moving radially in Schwarzschild space-

time )
1, Rs. oy 1 7
L=—-(1-2%eiy -
g5 Ty

d
— 7.28
dr ( )
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where 7 is the time measured on a standard clock which the particle is carrying.
The momentum conjugate p; of the cyclic coordinate t, is a constant of motion.

= =—(1-= 2
bt ot ( r)Ct (7.29)

4-velocity identity: u,ut = —c*:
—(1 - 2)PP 4 —— = —¢ (7.30)

Inserting the expression for ¢ gives:

2
2 Py Rg. 5
- = 1—-— 7.31
- e - 22 (7.31)
Boundary conditions: the particle is falling from rest at r = rg.
f%s 02 J%S 2
1l—-—)——==—4/1——¢ 7.32
pe=—(1-"5 — o (7.32)
T
-
t(r=rg)

giving

\/]TS h—r (7.33)
/ F c\/% (7.34)

Integration with 7 = 0 for r = 0 gives:

o arcsm1 - A [ WJ1—— (7.35)
C To To TQ

T is the proper time that the particle spends on the part of the fall which is
from r to r=0. To the lowest order in % we get:

2 ror
= 7.36
4 3\/ Rsc ( )

Travelling time from r = Rg to r = 0 for Rg = 2km is then:

2]%5

IT(Rs)| = =4 %107 % (7.37)
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7.3 Light cones in Schwarzschild spacetime

The Schwarzschild line-element (with ¢ = 1) is
Rg dr?
ds®* = —(1 — =2)dt? + ———5—
T 2

We will look at radially moving photons (ds? = d2? = 0). We then get

1
RS rzdr r— Rg
=4 dt
/7 N s 3

rdr

+ 72d0? (7.38)

(7.39)
= +dt

r— Rg
with + for outward motion and — for inward motion. For inwardly moving
photons, integration yields

r+t+ Rgln ‘RL — 1| = k = constant (7.40)
S

We now introduce a new time coordinate ¢’ such that the equation of motion
for photons moving inwards takes the following form
dr
dr’ (7.41)
t'=t+ Rsln|— —1
sln|— R |

The coordinate t' is called an ingoing Eddington-Finkelstein coordinate. The
photons here always move with the local velocity of light, c¢. For photons moving
outwards we have

r+ Rgln|— — 1| =t +k (7.42)
Rg
Making use of t = ' — RgIn |- — 1| we get

r+2RSln\RL—1|:t'—|—k‘
S

dr 2Rg dr r+ Rg dr
= — — =1l — =1

@ T Rgdl r— Rgdl (7.43)
N @77’—1:{5

dt'  r+ Rg

Making use of ordinary Schwarzschild coordinates we would have gotten the
following coordinate velocities for inn- and outwardly moving photons:

) (7.44)

which shows us how light is decelerated in a gravitational field. Figure 7.1 shows
how this is viewed by a non-moving observer located far away from the mass. In
Figure 7.2 we have instead used the alternative time coordinate ¢'. The special
theory of relativity is valid locally, and all material particles thus have to remain
inside the light cone.
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Collaps of light cone
at the horizon, r =R g

|

Trajectory of transmitter

/

horizon

Light cone

/

Rs

Figure 7.1: At a radius r = Rg the light cones collapse, and nothing can any
longer escape, when we use the Schwarzschild coordinate time.

Trajectory of transmitter

7

horizon

Rs
Figure 7.2: Using the ingoing Eddingto n-Finkelstein time coordinate there is no
collapse of the light cone at » = Rg. Instead we get a collapse at the singularity
at 7 = 0. The angle between the left part of the light cone and the #'-axis is
always 45 degrees. We also see that once the transmitter gets inside the horizon
at r = Rg, no particles can escape.



108

Chapter 7. The Schwarzschild spacetime

7.4 Embedding of the Schwarzschild metric

We will now look at a static, spherically symmetric space. A curved simultaneity
plane (dt = 0) through the equatorial plane (df = 0) has the line element

ds® = gppdr? + r2de? (7.45)

with a radial coordinate such that a circle with radius r has a circumference of
length 27r.

We now embed this surface in a flat 3-dimensional space with cylinder co-
ordinates (z,r, ¢) and line element

ds? = dz* + dr? + r*d¢? (7.46)

The surface described by the line element in (7.45) has the equation z = z(r).
The line element in (7.46) is therefore written as

ds®* =1+ (%)’ﬂdr2 + r2d¢? (7.47)
T

Demanding that (7.47) is in agreement with (7.45) we get

d d
gor =1+ (d—i)2 o d—i —+/gr —1 (7.48)

Choosing the positive solution gives

dz = \/grr — ldr (7.49)

In the Schwarzschild spacetime we have

Grr = —RS (750)

Making use of this we find z:

/T dr
z = —_—
Rgs /1_&

This is shown in Figure 7.3.

VARs(r — Rg) (7.51)

7.5 Deceleration of light

The speed of light in Schwarzschild coordinates is

_Bs
.

c=1 (7.52)

To measure this effect one can look at how long it takes for light to get from
Mercury to the Earth. This is illustrated in Figure 7.4. The travel time from
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Figure 7.3: Embedding of the Schwarzschild metric.

Earth

Figure 7.4: General relativity predicts that light traveling from Mercury to the
Earth will be delayed due to the effect of the Suns gravity field on the speed of

light. This effect has been measured.
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21 to z9 1S
2 dz #2 Rg 72 Rg
At:/ %/ 1+—dz:/ 1+ —)dz
21 1_¥ Zl( T) Zl( \/b2+22)
\/W—FZQ
Vzi2 4 b2 — |z

where Rg is the Schwarzschild radius of the Sun.

The deceleration is greatest when Earth and Mercury (where the light is
reflected) are on nearly opposite sides of the Sun. The impact parameter b is
then small. A series expansion to the lowest order of b/z gives

(7.53)

=23+ |z1| + RsIn

4‘2’1’22
b2

At = 29+ |21| + RsIn (7.54)
The last term represents the extra traveling time due to the effect of the Suns
gravity field on the speed of light. The journey takes longer time:

Rgs = the Schwarzschild radius of the Sun ~ 2km

|z1| = the radius of Earth’s orbit = 15 x 109
2o = the radius of Mercury’s orbit = 5.8 x 101%n
b = Reo=T7x10°m

give a delay of 1.1 x 10™%s. In addition to this one must also, of course, take
into account among other things the effects of the curvature of spacetime near
the Sun and atmospheric effects on Earth.

7.6 Particle trajectories in Schwarzschild 3-space

1 .
L= igWX“X
. 7.55)
1 Rs\ - %7"2 L ogsg 1o . 9,9 (
Since t is a cyclic coordinate
oL R.\ .
Pe= e = <1 - Ts> t = constant = E (7.56)

where E is the particle’s energy as measured by an observer "far away" (r > Ry).
Also ¢ is a cyclic coordinate so that

I, .
Py = g—¢ = r?sin? ¢ = constant (7.57)

where py is the particle’s orbital angular momentum.
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Making use of the 4-velocity identity U2 = g WX BXY = —1 we transform
the above to get

Rs\ o 2 242 | 2 202
—(1-— t+17R+7°0 + 7r*sin 0p° = —1 (7.58)
r _ Iis
-
which on substitution for ¢ = 1_E% and ¢ = = g‘le ; becomes
E? 72 242 pé
- + N R S 7.59
1— 8 L r2sin? 0 (7.59)

Now, refering back to the Lagrange equation

d ( 0L oL
- (8)@) ~ a5 =0 (7.60)

we get, for 0

(r20)* = 12 sin 0 cos 0¢°

pi cosd (7.61)
~ r2gin’ 6
Multiplying this by 726 we get
i, 9ae COSOO
0)(r<0)® = —— 7.62
()20 = (762
which, on integration, gives
. D 2
(r26)* =k - (mfa) (7.63)

where k is the constant of integration.

Because of the spherical geometry we are free to choose a coordinate system
such that the particle moves in the equatorial plane and along the equator at a
given time ¢ = 0. That is = § and 0 = 0 at time ¢t = 0. This determines the
constant of integration and k = pé such that

. 1
2\2 2
ref)” = 1——— 7.64
02 =13 (1- ) (764
The RHS is negative for all 6 # 7. It follows that the particle cannot deviate
from its original (equatorial) trajectory. Also, since this particular choice of
trajectory was arbitrary we can conclude, quite generally, that any motion of
free particles in a spherically symmetric gravitational field is planar motion.
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7.6.1 Motion in the equatorial plane

E2 2 3
- o (7.65)

1—f8 B y2

2
i = E? - (1 - %) (1 + %) (7.66)

that is

by

5 2 (7.67)
Py Rsp
T
roor r
2
1R, 1Py
rl——-——+4+-—
2 r + 2 72
Newtonian potential Vjy is defined by using the last expression in
GM b}
VW=V-1=Vy=—"r+-2 (7.68)
r 2r

The possible trajectories of particles in the Schwarzschild 3-space are shown
schematically in Figure 7.5 as functions of position and energy of the particle
in the Newtonian limit.

To take into account the relativistic effects the above picture must be mod-
ified. We introduce dimensionless variables

r pd)
X = — = -
eIvi and k CM (7.69)
The potential V?2(r) now take the form
2 k2 2k2\'?
For r equal to the Schwarzschild radius (X = 2) we have
k2 2k2

For k? < 12 particles will fall in towards r = 0.
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mV,

Circles

Figure 7.5: Newtonian particle trajectories are functions of the position and
energy of the particle. Note the centrifugal barrier. Due to this particles
with pg # 0 cannot arrive at r = 0.

An orbit equation is one which connects r and ¢. So for motion in the
equatorial plane for weaks fields we have

dop  pg e_d _py d
dt  mr? dr  mr2deo (772)
Introducing the new radial coordinate u = % our equations transform to
du 1 dr 1 mr?dr m.
do o) re pg dt Do (7.73)
I
 mde
Substitution from above for 7 in the energy equation yields the orbit equation,
du\ 2 5  m? E?
<@> + (1 —2GMu) (u + g> = g (7.74)
Differentiating this, we find
d? GMm?
Cru= "5 3eM? (7.75)
de Dy

The last term on the RHS is a relativistic correction term.
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20 40 60 80 100

0.9¢

Figure 7.6: When relativistic effects are included there is no longer a limit to
the values that r can take and collapse to a singularity is "possible". Note that
V2 is plotted here.

7.7 Classical tests of Einstein’s general theory of rel-
ativity

7.7.1 The Hafele-Keating experiment

Hafele and Keating measured the difference in time shown on moving and sta-
tionary atomic clocks. This was done by flying around the Earth in the East-
West direction comparing the time on the clock in the plane with the time on a
clock on the ground.

The proper time interval measured on a clock moving with a velocity v’ = %
in an arbitrary coordinate system with metric tensor g, is given by

dr = (_ngl’dx#de)% . dx® = cdt
c

v v?
= (—900 — 291‘0; - C—Q)th (7.76)

v? = gijv" v’
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For a diagonal metric tensor (g;o = 0) we get

v 1 2 2
—)2dt, v = g;(v") (7.77)

dr = (—goo —
(—g00 )

We now look at an idealized situation where a plane flies at constant altitude
and with constant speed along the equator.

Rs .1

To the lowest order in % and Z—j we get

Rg 102
The speed of the moving clock is
v=(R+h)Q+u (7.80)

where (2 is the angular velocity of the Earth and u is the speed of the plane. A
series expansion and use of this value for v gives
GM 1R?Q? gh 2RQu+u? GM
—— e+ = — —————)At = —— — RO? (7.81
Rcz 2 ¢2 * c? 2¢2 JAL, g R2? (7:81)
u > 0 when flying in the direction of the Earth’s rotation, i.e. eastwards. For a
clock that is left on the airport (stationary, h = u = 0) we get

AT =(1

GM 1R*Q?
Rec?2 2 2

To the lowest order the relative difference in travel time is

Arp=(1— )At (7.82)

AT — A g%_ZRQu—i—uz

k= —79—= _— 7.83
ATy c? 2c2 ( )
Measurements:
Travel time: Aty = 1.2 x 10°s (a little over 24h)
Traveling eastwards: k. = —1.0 X 10712

Traveling westwards: k,, = 2.1 x 10712
(AT — ATp)e =-12x10""s ~ —120ns
(AT — ATp)w = 2.5x 10775~ 250ns

7.7.2 Mercury’s perihelion precession

The orbit equation for a planet orbiting a star of mass M is given by equation
(7.75),

d?u o GMm?

W p¢2 + ku2 (784)
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where k = 3GM. We will be slightly more general, and allow k to be a theory-
or situation dependent term. This equation has a circular solution, such that

B GMm?

2
Uy = p¢2 + kug (785)

With a small perturbation from the circular motion w is changed by u;, where
u1; < ug. To lowest order in u; we have

d?uy GMm? 9
W +up +up = p¢2 + kuog® + 2kuguq (7.86)
or
d2u1 d2u1
W + up = 2kugu; & W + (1 — 2ku0)u1 =0 (787)

For kug < 1 the equilibrium orbit is stable and we get a periodic solution:

uy = eug cos[v/1 — 2kug(p — ¢o)] (7.88)

where € and ¢( are integration constants. e is the eccentricity of the orbit. We
can choose ¢y = 0 and then have

1
S =u=uo +u1 = up[l + ecos(v/1 — 2kuge) (7.89)
Let f =1 —2kuy =

L 114 cos f9) (7.90)
ro T
For f =1 (k = 0, no relativistic term) this expression describes a non-precessing
elliptic orbit (a Kepler-orbit).

For f <1 (k> 0) the ellipse is not closed. To give the same value for r as
on a given starting point, ¢ has to increase by 27” > 27. The extra angle per

rotation is 27 (5 — 1) = Agr.

1
Ap1 =271(—— — 1) = 27k 7.91
¢1 ﬂ-(m ) TRUQ ( )
Using general relativity we get for Mercury
GMm?
E=3GM = A¢=61GMug~6rGM= “ (7.92)
¢

GM
A¢p = 67( ) m)2per orbit. (7.93)

@

which in Mercury’s case amounts to (A¢)century = 43"
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7.7.3 Deflection of light
The orbit equation for a free particle with mass m = 0 is

ou 5 9 1
8(;5) +B7 =~ (7.94)
Po _

T2
where b = =+ = impact parameter. For a photon bgz'S =1,py= EbQQB, where pgy
is the photon’s angular momentum.

(

B2 =(1-2GMu)u?®, B?Lax =27G*M? | rypax = 3GM (7.95)

Light falling towards the body with b > Bmnax will be deflected and pass M,
while light with a smaller impact parameter will hit M.

The straight, dashed line shown in Figure 7.7 is given by cos ¢ = -= = buy,
which gives the unperturbed solution for ug:

Uy = %cosqb (7.96)

The photon trajectory (the curve in Figure 7.7) is a perturbation of the straight

photon

Figure 7.7: Light traveling close to a massive object is deflected.

(dashed) line:
u=ug+u, u <u (7.97)

To the 1st order in u; we get

ou 1 ouq

a—¢ ESI ¢+ 8¢
1 2 . Ou
=3~ bQCOS (b——smqba(ZS
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Since w7 is small we get

2

2
u? ~ up? + 2uouy = — cos® ¢ + = cos duy

b2 b
2GM 1 2 M
B2~ (1- Gb cos QB)( cos® ¢ + 5 €08 puy) , GT <1 (7.99)
1 2GM 2
b2 cos? ¢ — 73 cos® ¢ + 7 Cos QU1
Inserting this into the orbit equation gives
1 2 M 2 1
b—281n2¢>7— ¢—¢+— gbf s?’ngrgcosqbul:b—Z
M
— tanqb?;;l +uy = G;—Qcongb
1 %+cos¢u GMcos 10} GM(COS¢_COS¢)
sing ¢  sin? ¢ L sin? ¢ b? “sin? ¢
Uy GM | cos ¢
d = —— — d
(sinq§> b2 (Sl ¢ cos ¢)de
(7.100)
Integration gives
M 1
w o _GM 1 otk
sin ¢ b2 sin ¢ (7.101)
GM '
n =5 (1 +sin? ¢) + K sin ¢

where K is an integration constant. From Figure 7.7 it follows that the solution
must be symmetric about ¢ = 0. sin ¢ is antisymmetric, and we must therefore
have K =0 =

GM )
uy = b—2(1 + sin? ¢) (7.102)
The trajectory of the photon is
1 M
w=no+u = Feosé + GT(z _ cos? §)] (7.103)

To find out how much the light is deflected, we let r — oo, (v — 0). We will
then have ¢ — 7, and since cos § = 0 we can neglect the cos? ¢-term.

cos ¢ + 2GTM — 0 when r — o0
29GM (7.104)
cospg = ———
b
From Figure 7.7 we get
VAN 2GM
wosly =)=
r A x A9 2:GM A6 Ag  (T109)
= COS-COS— +sSln—sSin— =———, sSlh— R —

2 2 2 2 b
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|AG] ~

AGM
b

(7.106)

For light traveling in a tangent line trajectory to the surface of the Sun we get

AG =1.75"

(7.107)



Chapter 8
Black Holes

’Surface gravity’:gravitational acceleration on the

8.1
horizon of a black hole
Surface gravity is denoted by x; and is defined by
© a= Jagar (8.1)
t

k= lim —

r—rg ul
is

where 7 is the horizon radius, ry = Rg for the Schwarzschild spacetime, u

the time component of the 4-velocity.
The 4-velocity of a free particle instantanously at rest in the Schwarzschild

spacetime:
dt 1 €
- t— - - t
U=Ue = —€ = €y — 82
dr vV —9gtt /1 — &s ( )
T

The only component of the 4-acceleration different from zero, is a,. The
u’e, = (v, + Tl u®)u’e),.

I

sV

4-acceleration:d = Vzu = u
14

Qr = (ur,y + Frazlua)u
= ur,yuy +L (ut)2

=0

o Frtt
= hs
.
I, — 1dgnw  Rs (8.3)
T2 ar T 22
Rg
— _2r
ar = TRS
T
R R
arzgrrar:ﬂ:(l——s)arz—s
Grr r 272
Rs
\/ QTQRS (measured with standard instru-
148

The acceleration scalar: a = v/a,a” =

120
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ments: at the horizon, time is not running).

== 57*2 (8.4)

With e a ARs GM
W T (8:5)
k= lim =~ = ! ! (8.6)

r—Rsul  2Rg  AGM

Including c the expression is kK = ﬁ. On the horizon of a black hole with one
solar mass, we get ko = 2 X 1013;"—2.

8.2 Hawking radiation:radiation from a black hole (1973)

The radiation from a black hole has a thermal spectrum. We are going to find’
the temperature of a Schwarzschild black hole of mass M. The Planck spectrum
has an intensity maximum at a wavelength given by Wien’s displacement law.
Nhc .
A= T where k is the Boltzmann constant, and N=0.2014
For radiation emitted from a black hole, Hawking derived the following expres-
sion for the wavelength at a maximum intensity

STNGM

A=4nNRg = =2 (8.7)
Inserting A from Wien’s displacement law, gives:
he3 he
T = = .
8rGEM 27k (8.8)
Inserting values for 7, ¢ and k gives:
2x 1074
7o 22 107Tm (8.9)

Rs

For a black hole with one solar mass,we have T ~ 10~7. When the mass is
decreasing because of the radiation, the temperature is increasing.So a black
hole has a negative heat capacity. The energy loss of a black hole because of
radiation, is given by the Stefan-Boltzmann law:

dM A
where A is the surface of the horizon.
167 G2 M2
A=4nR% = ”74 (8.11)

C
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gives:

M1 A Q.
dt 15360 GZM?2 — M?2 (8.12)
M(t) = (Mg —3Qt)"*, My = M(0)

A black hole with mass My early in the history of the universe which is about
to explode now, had to have a starting mass

My = (3Qt0)"? ~ 10%kg (8.13)

about the mass of a mountain. They are called 'mini black holes’.

8.3 Rotating Black Holes: The Kerr metric

This solution was found by Roy Kerr in 1963.

A time-independent, time-orthogonal metric is known as a static metric. A
time-independent metric is known as a stationary metric. A stationary metric
allows rotation.

Consider a stationary metric which describes a axial-symmetric space

ds® = —e2dt* + e®dr? + e*¥(dp — wdt)? + e dh? | (8.14)

where v, u, 1, A and w are functions of r and 6.
By solving the vacuum field equations for this line-element, Kerr found the

solution:
2N 2 72
e = —pEQ . e = % , e = Fsingﬁ . e =p%,
2M
w = Tar , where p? =r%4a’cos?f

A=r%4a®>—2Mr
¥2 = (r? +a?)? — a*Asin? 6
(8.15)

This is the Kerr solution expressed in Boyer-Lindquist coordinates. The function
w is the angular-velocity. The Kerr-solution is the metric for space-time outside
a rotating mass-distribution. The constant a is spin per mass-unit for the mass-
distribution and M is its mass.

Line-element:

2M 2 AM
ds? = —(1— =5 0)dt? + Uodr? — 2 sin® Gdtde + p*d6?
p A p (8.16)
9 9 IMa?r . 9 . 9 9
+(r“+a°+ 5— sin 0) sin” 0d¢
p

(Here M is a measure of the mass so that M = G - mass, ie. G =1)
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Light emitted from the surface, » = ro, where g, = 0 is infinitely redshifted
further out. Observed from the outside time stands still.

0> =2Mry = T(Q)—FCLQCOSQQZQMTO (®.17)
8.1
o =M £/ M? — a2cos20
This is the equation for the surface which represents infinite redshift.
8.3.1 Zero-angular-momentum-observers (ZAMO’s)
The Lagrange function of a free particle in the equator plane, 0 = 3
1 . 1 1 . 1 . .
L= —§(€2V — we?)? + 562“7'“2 + 562%52 + §€2>\92 —we*iep (8.18)
Here 6 = 0. The momentum pge of the cyclic coordinates ¢:
oL o, ; . . dt do
=" =eM(p—wt), t=— top=— 8.19
po= g =i, i=, coto=F (8.19)
The angular speed of the particle relative to the coordinate system:
o _ ¢
O=—== =Qt
a7 ¢ (8.20)
= pg = Vi —w)
Pg is conserved during the movement.
B 2Mar
 (r24a?)? —a2(r? 4+ a? - 2Mr) ' (8.21)
w—0 when 7r— o0
When studying the Kerr metric one finds that Kerr — Minkowski for large
r. The coordinate clocks in the Kerr space-time show the same time as the
standard-clocks at rest in the asymptotic Minkowski space-time.

A ZAMO is per definition a particle or observer with ps = 0. py is a constant
of motion, so the stone remains a ZAMO during the movement. A local reference
frame which coincides with the stone is a local inertial frame.

do
=0=0=-"*L= 8.22
2 prial (8.22)
That is, the local inertial frame obtains an angular speed relative to the BL-
system (Boyer-Lindquist system).

Since the Kerr metric is time independent, the BL-system is stiff. The
distant observer has no motion relative to the BL-system. To this observer the
BL-system will appear stiff and non-rotating. The observer will observe that
the local inertial system of the stone obtains an angular speed a is spin

do 2QMar 0.3 per mass
ar YT (r2 +a?)? — a2(r2 + a2 — 2Mr) (823) unity and

In other words, inertial systems at finite distances from the rotating mass M
are dragged with it in the same direction. This is known as inertial dragging
or the Lense-Thirring effect (about 1920).

Ma is spin
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8.3.2 Does the Kerr space have a horizon?

Definition 8.3.1 (Horizon)
a surface one can enter, but not exit.

Consider a particle in an orbit with constant r and 6. It’s 4-velocity is:

L di¥ dtd¥
U= ——=———
do '
= (g — 29,0 —g.,,02)72(1,0 here Q = =2
(—9u 9 ¢ 9 ¢¢ )7 2(1,9), where i
To have stationary orbits the following must be true
90V +29,6Q+9, <0 (8.25)
This implies that €2 must be in the interval
Qmin < 2 < Qnaz (8.26)
where Qin = w — , /w? — ggi, Qaz = w + , Jw? — ;ﬁ since g4 = —Wg 44

Outside the surface with infinite redshift g,, < 0. That is €2 can be negative,
zero and positive. Inside the surface r» = r¢ with infinite redshift g, > 0. Here
Qin > 0 and static particles, 2 = 0, cannot exist. This is due to the inertial
dragging effect. The surface r = rg is therefore known as “the static border”.

The interval of 2, where stationary orbits are allowed, is reduced to zero
when Qnin = Qnaz, that isw = ggﬁ = g4 =wg " (equation for the horizon).

For the Kerr metric we have:
gy =wg bb — e (8.27)
Therefore the horizon equation becomes
2w _ _ ) 2 _
e’=0 =A=0 St =2mr+a*=0 (8.28)

The largest solution is . = M + v/M? —a? and this is the equation for a
spherical surface. The static border is rg = M + VM2 — a? cos .
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horjzon

T+

To

ergo-sphere

static border
stationary paths

Figure 8.1: Static border and horizon of a Kerr black hole
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Schwarzschild’s Interior Solution

9.1 Newtonian incompressible star

V3¢ = 4nGp, ¢ = ¢(r)
1 d, odo (9.1)
222y =4
r2 dr (r dr) mGp
Assuming p = constant.

d(rzg) = 4w Gpridr

d 4
r2—¢ = —TFGpr3 + K (9:2)
dr 3
=M(r)+ K
Gravitational acceleration: § = —V¢ = —Z—fe}
M(T) Kl 47 Kl
Finite g in 7 = 0 demands K; = 0.
47 dop 4Am
_ hak i 4
g=—5Gpr, —=—2Gpr (9.4)
Assume that the massdistribution has a radius R.
2
¢ = ?FG/)TQ + K, (9.5)
Demands continuous potensial at r = R.
2m M(R) 4
—GpR?+ Ky = —~ = ——GpR?
g opi TR =g 3P (9.6)

= Ky = —2rGpR?

(with zero level at infinite distance). Gives the potensial inside the mass distri-
bution: )
¢ = %Gp(rz — 3R?) (9.7)

126
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The star is in hydrostatic equilibrium, that is, the pressure forces are in equi-
librium with the gravitational forces.

dm=4T1pr 2qr

Figure 9.1: The shell with thickness dr, is affected by both gravitational and
pressure forces.

Consider figure 9.1. The pressure forces on the shell is 47r2dp. Gravitational
forces on the shell:

Gmass inside shell - mass of the shell

re 9.8
:G%pr?"élﬂpﬂdr (9.8)
r2
Equilibrium:
2 Am 3
dmredp = —G?pr - Ampdr
4
dp = —%Gp%“dr
U
2rG (9.9)
p=Ksz——— por?
221G
P(R) =0 gives : K3 = WT,O2R2
2nG
p(r) = sz(R2 —?)

No matter how massive the star is, it is possible for the pressure forces to keep
the equilibrium with gravity. In Newtonian theory, gravitational collapse is not
a necessity.
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9.2 The pressure contribution to the gravitational mass
of a static, spherical symmetric system

Gravitational acceleration :
a
g=+—, a=./a,a" (9.10)
n

We have the line element:

ds? = —e22) gt 4 280 gr2 4 12402

(9.11)
gt = =€, g =¥
gives (because of the gravitational acceleration)
g=+e* P/ (9.12)
From the expressions for E . E E%, E follovv (see Section 7.1)
. 20
E% - Ef, —EG E¢ = 220 (Z= ; L _af) . (9.13)
We also have
2c
(7“260‘_50/) e 5( +a +ao?—da'f), (9.14)
which gives
1 . ~ . ~
9="+53 (Ef - B, - E% - EQ;)TQea+6dr : (9.15)
By applying Einstein’s field equations
B = 87GT", (9.16)
we get
ArG 3 . j }
g=+—5 [T} -T7 - T - T(g’)rQeo‘Jrﬁdr : (9.17)
This is the Tolman-Whittaker expression for gravitational acceleration.
The corresponding Newtonian expression is :
ArG
gN = — WZ /pr2d7“ (9.18)
T
The relativistic gravitational mass density is therefore defined as
it 7 ] b
For an isotropic fluid with
. X i .
T =—p, T’;:Té:T‘éi):p (9.20)
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we get pg = p + 3p (with ¢ = 1), which becomes

3p
PG =p+ 5 (9.21)

It follows that in relativity, pressure has a gravitational effect. Greater pressure
gives increasing gravitational attraction. Strain (p < 0) decreases the gravita-
tional attraction.

In the Newtonian limit, ¢ — oo, pressure has no gravitational effect.

9.3 The Tolman-Oppenheimer-Volkov equation

With spherical symmetry the spacetime line-element may be written

d82 — _62(1(7“) dt? + e2ﬂ(7“) d7“2 + TQdQQ

. (9.22)
By =8nGTy , T, = diag(—p,p,p,p)
From E ;; we get
1d
—Qd—[’r’(l - 6725)] = 87TGp
ar , (9.23)
r(l—e 29) = 2G/ drpridr
0
where m(r) = [ 4mpr?dr giving
28 _q_ 2Gm(r) _ 1 (9.24)
r g Tr
From E .. we have
E,ﬁ,’a = 87TGT,,¢,,¢
2da _,5 1 g (9.25)
;56 —ﬁ(l—e ):Sﬂ'Gp
We get
2d 2 2
__a(l_ Gm(r)) B Gn;(r) — 87Gp
rdr r r

da _ omir) + dmrip(r) (9.26)
dr r(r —2Gm(r))
The relativistic generalized equation for hydrostatic equilibrium is T’"ll/’ = 0,
giving

T70 + T, T + T, T = 0

. . 1 Jp

v T g o
T — e_g% (9.27)

’ r

[T =T = Pf,:gp +T%ap
[, T =TT, T =TT 0+ Tssp
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In orthonormal basis we have

QW =0 =>T4s=-T Pjic (9.28)
'S =T ara = Traa="Taa
T”l’,’ = 0 now takes the form:
-8dP | pi (9.29)
€ ar P T gl :
We have
E . . . ~
L=l =L =% (9.30)
and we also have F’;f = 6*5%, giving:
dp da
— — =0 9.31
o Tt (9.31)
Inserting Equation 9.26 into Equation 9.31 gives
dp m(r) + 4nr3p(r)
—=-G 9.32
dr (p+p) r(r —2Gm(r)) (9:32)

This is the Tolman-Oppenheimer-Volkov (TOV) equation. The component gy =
—e22(") may now be calculated as follows

d
P _ga , p = constant
PP (9.33)
In(p+p) =K -« :
p+p=Kie®, p=Kie*—p
Hence
e = e B)(1 4 g)_l (9.34)

where R is the radius of the mass distribution.

9.4 An exact solution for incompressible stars - Schwarzschild’s
interior solution

The mass inside a radius r for an incompressiable star is

m(r) = gm)r?’ (9.35)

=1-_ (9.36)
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where
3 r3 2
2
=gy M) = o Te=20Mm = (9:37)
TOV equation:
dp 13 4 dmr3p(r)
T __Ggs3 +
dr r(r— 2G%7rpr3) (p+p(r))
4 p+3p(r)
= Qg LT
3T G%Wf(p +p(r))
1 p+3p(r)
— _Ejr(p + p(r)) (9.38)
(12
4 d 1 r
= / P ~ T 9,2 / - 7 dr
o (p+3p)(p+p 20°p Jr 1 -5
p+p  [a®— R?
3p+p -V a2 -2

So the relativistic pressure distribution is

ViZ -2 - V- R?
— N N p, Vr <R (9.39)

p(r)

also

3 a® T
2
=  Z=_—>1 4

a S2Gp 12 Ts> =a>r (9.40)

To satisfy the condition for hydrostatic equilibrium we must have p > 0 or
p(0) > 0 which gives

0« VE-R?
0)=pe=——r " >0 9.41
P0) = pe= o (9.41)

in which the numerator is positive so that

3vVa2—R?Z>a

9a%> — 9R? > a?

R \/ga (9.42)

8 8 3 1
RP<-a=-—— =
9¢ 98rGp 3nGp

Stellar mass:

4 4 1 4
O S L B
3 37" 35Gp T 9G
. (9.43)

M < —
9G \/37Cp
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For a neutron star we can use p ~ 107 g /em3. An upper limit on the mass is
then M < 2.5 Mg Substitution for p in the expression for e gives

3 R, 1 R,
Sy [ LS Y S i 44
e 5 1 73 R37‘ (9.44)

The line element for the interior Schwarzschild solution is

2
S 1 S 2
ds2:—<g\/1—%—§ 1—%7’2) dt2+%+r2d9, r<R
— B,

(9.45)
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Cosmology

10.1 Comoving coordinate system

We will consider expanding homogenous and isotropic models of the universe.
We introduce an expanding frame of reference with the galactic clusters as
reference particles. Then we introduce a ’comoving coordinate system’ in this
frame of reference with spatial coordinates x,#,¢. We use time measured on
standard clocks carried by the galactic clusters as coordinate time (cosmic time).
The line element can then be written in the form:

ds® = —dt® + a(t)*[dx* + r(x)?dQ?] (10.1)

(For standard clocks at rest in the expanding system, dxy = d2 = 0 and ds? =
—d7? = —dt?). The function a(t) is called the expansion factor, and t is called
cosmic time.

The physical distance to a galaxy with coordinate distance dy from an ob-
server at the origin, is:

dly = \/gyxdx = a(t)dx (10.2)

Even if the galactic clusters have no coordinate velocity, they do have a radial
velocity expressed by the expansion factor.

The value x determines which cluster we are observing and a(t) how it is
moving. 4-velocity of a reference particle (galactic cluster):

ot da
- dr dt

= (1,0,0,0) (10.3)

This applies at an abritrary time, that is % = 0. Geodesic equation: % +

I su®u? = 0 which is reduces to: I';, =0

0 0 0
1 e P
M = 59" (Gui2 +Gu2 +Gu0) = 0 (10.4)

We have that g;; = —1. This shows that the reference particles are freely falling.

133
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10.2 Curvature isotropy - the Robertson-Walker met-
ric

Introduce orthonormal form-basis:

Wi=dt Wt =a)dy W = alt)r(x)do
w =dt wi=al)dy o =alt)r(x)d (10.5)
w® = a(t)r(x) sin Od¢

Using Cartans 1st equation:

dw? = —QF A W (10.6)

to find the connection forms. Then using Cartans 2nd structure equation to
calculate the curvature forms:

Rf, = d, + O A9, (10.7)
Calculations give: (notation: ~ = &4,/ = % )
- a 4 N
Ri=—-u'n, W =W W
a
R dQ ! R R . 3 .
E)g. = (E - @)&X AW, w =w 7£¢ (10-8)
52 2
a 1 r
R = + w? A w?
&g (a2 202 r2a2)_ v

The curvature of 3-space (dt = 0) can be found by putting a = 1. That is:

sR: = ——winw
o T,{ - (10.9)
0 _ 0
3By = (5 = z)ef ne?

The 3-space is assumed to be isotropic and homogenous. This demands

,,,,// 1— 7,./2

r 72

=k, (10.10)

where k represents the constant curvature of the 3-space.

"+ kr=0 and 1’ =+1-kr? (10.11)
Solutions with 7(0) =0, 7/(0) =1 :

V=kr = sinh(vV—kx) (k<0)
r = x (k=0) (10.12)
Vikr = sin(Wky) (k> 0)
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The solutions can be characterized by the following 3 cases:

r = sinhy, dr=+1+r2dy, (k=-1)

r = siny, dr=+v1-r2dy, (k=1)

In all three cases one may write dr = /1 — kr2dy, which is just the last equation
above.
We now set dy? = dr?

7=z into the line-element :

ds® = —dt* + a*(t) (dx* + r*(x)dQ?)

= —dt? + a*(t) dr® + r2dQ?
1— kr2

(10.14)

The first expression is known as the standard form of the line-element, the
second is called the Robertson-Walker line-element.

The 3-space has constant curvature. 3-space is spherical for k£ = 1, Euclidean
for kK = 0 and hyperbolic for £ = —1.

Universe models with £ = 1 are known as ’closed’ and models with k¥ = —1
are known as ’'open’. Models with k£ = 0 are called 'flat’ even though these
models also have curved space-time.

10.3 Cosmic dynamics

10.3.1 Hubbles law

The observer is placed in origo of the coordinate-system; yg = 0. The proper
distance to a galaxy with radial coordinate x. is D = a(t)xe. The galaxy has a
radial velocity:

4D
dt

v=2"—ax. = %D — HD whereH = g (10.15)

The expansion velocity v is proportional to the distance D. This is Hubbles
law.

10.3.2 Cosmological redshift of light

At. : the time interval in transmitter-position at transmission-time
Atg : the time interval in receiver-position at receiving-time

Light follows curves with ds? = 0, with df = d¢ = 0 we have :

dt = —a(t)dx (10.16)
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f
A
to + Aty
to
te + At,
te X
xo =20 Xe

Figure 10.1: Schematic representation of cosmological redshift

Integration from transmitter-event to receiver-event :

to ¢ X0
—_— = — d =
/te a(t) / R

/to-l—Ato dt X0
— = dx = Xe ,
to+nt, aft) Xe ‘
which gives
to+Atg dt to Jt
/ at —/ @ _y (10.17)
tet+Ate @ te @
or
to+Atg dt te+Ate dt
/ dat _ / @ _y (10.18)
to a te a

Under the integration from t¢. to t. + At. the expansion factor a(t) can be
considered a constant with value a(t.) and under the integration from ¢y to
to + Ato with value a(ty), giving:

At At
alt) = alto) (10.19)




10.3 Cosmic dynamics

137

Atg and At. are intervals of the light at the receiving and transmitting time.
Since the wavelength of the light is A\ = cAt we have:
A A
20 e (10.20)
a(to) — afte)
This can be interpreted as a “stretching” of the electromagnetic waves due to

the expansion of space. The cosmological redshift is denoted by z and is given
by:

Ao — Ae t
R _ alto)

= -1 10.21
e a(te) ( )
Using ap = a(tp) we can write this as:
1+2(t) =2 (10.22)
a

10.3.3 Cosmic fluids

The energy-momentum tensor for a perfect fluid (no viscosity and no thermal
conductivity) is

T/W = (P + p)uuuu + PGuv (10'23)

In an orthonormal basis
T = (p + p)upus + pips (10.24)

where 1), is the Minkowski metric. We consider 3 types of cosmic fluid:

1. dust: p =0,
Tpp = pugup (10.25)
2. radiation: p = %p,
T 1 +
o = 5Pt T PN
"3 S (10.26)
= §(4Uﬂuz> + 1 40)
The trace L)
T= T’;L = §(4u“uﬂ +68,) =0 (10.27)
3. vacuum: p = —p,
If vacuum can be described as a perfect fluid we have p, = —p,, where

p is the energy density. It can be related to Einstein’s cosmological constant,
A =87Gp,.

One has also introduced a more general type of vacuum energy given by
the equation of state py = wpy, where ¢ denotes that the vacuum energy is
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connected to a scalar field ¢. In a homogeneous universe the pressure and the
density are given by

1

Po= 3B V),  pe= 3+ V(9) (10.29)

where V(¢) is the potential for the scalar field. Then we have

12 _ v
w = %;25_____9?2 (10.30)
70* + V(o)
The special case qﬁ = 0 gives the Lorentz invariant vacuum with w = —1. The

more general vacuum is called “quintessence”.

10.3.4 Isotropic and homogeneous universe models

We will discuss isotropic and homogenous universe models with perfect fluid
and a non-vanishing cosmological constant A. Calculating the components of
the Einstein tensor from the line-ement (10.14) we find in an orthonormal basis

342 3k

E; = ?4_&—2 (10.31)
. .2

Epn = —22_ &k (10.32)

The components of the energy-momentum tensor of a perfect fluid in a comoving
orthonormal basis are

Tiz=p,  Tiwn =p- (10.33)
Hence the ¢t component of Einstein’s field equations is
a+k
3 2= 8tGp+ A (10.34)
mm components:
i a k

where p is the energy density and p is the pressure. The equations with vanishing
cosmological constant are called the Friedmann equations. Inserting eq. (10.34)

into eq. (10.35) gives:
ArG

a= —Ta(p + 3p) (10.36)

If we interpret p as the mass density and use the speed of light ¢, we get

4nG
i = _”Ta(p +3p/c?) (10.37)

Inserting the gravitational mass density pg from eq.(9.21) this equation takes

the form G
d::~——§%—apg (10.38)
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Inserting p = wpc? into (9.21) gives
pa = (1+3w)p (10.39)
which is negative for w < —1/3, i.e. for P < V(¢). Special cases:
e dust: w=0, pg=p
e radiation: w = %, PG = 2p
e Lorentz-invariant vacuum: w = —1, pg = —2p

In a universe dominated by a Lorentz-invariant vacuum the acceleration of the

cosmic expansion is

817G
by = ”Ta,ov >0, (10.40)

i.e. accelerated expansion. This means that vacuum acts upon itself with repul-
sive gravitation.
The field equations can be combined into

-\ 2
a 8rG Ak
= () =, 2 10.41

(a> 3 7 +3 a? (1041)

where p,, is the density of matter, A = 87Gpp where py is the vacuum energy
with constant density. p = p,, + pa is the total mass density. Then we may
write 8 k

7r
=3/ (10.42)
The critical density p.r is the density in a universe with euclidean spacelike
geometry, k = 0, which gives

H2

3H?
- 10.43
Per Gy ( )
We introduce the relative densities
Q=" .= (10.44)
Per Per

Furthermore we introduce a dimensionless parameter that describes the curva-
ture of 3-space

k
Eq. (10.42) can now be written
Q + QA+ Q=1 (10.46)

From the Bianchi identity and Einstein’s field equations follow that the energy-
momentum density tensor is covariant divergence free. The time-component
expresses the equation of continiuty and takes the form

[(p + p)ue”]is + ()5 = 0 (10.47)
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Since ul = 1, u™ =0 and 7]% =1, p'™ =0, we get

(p+p) +(p+pu’y—p=0 (10.48)
or

p+(p+p) (s +T7%,)=0 (10.49)

_ i _ ; G i THR G 8
Here ul’yl, =0and T g = 0. Calculating Ffzfm for dwt = Fdﬁgo‘ A wP we get

W F 0 $ _ o0
D = D+ T + 1%, = 37 (10.50)
Hence .
[H—B(p—l—p)% =0 (10.51)
which may be written
(pa®) +pla®) =0 (10.52)

Let V = a® be a comoving volume in the universe and U = pV be the energy
in the comoving volume. Then we may write

dU + pdV =0 (10.53)

This is the first law of thermodynamics for an adiabatic expansion. It follows
that the universe expands adiabatically. The adiabatic equation can be written

P g0 (10.54)
p+p a
Assuming p = wp we get
d d
Lo 31+ uw)
P
—3(14w)
In £ _ In <i>
£o ao
It follows that
a —3(14w)
p=m (L) (10.55)
ao

This equation tells how the density of different types of matter depends on the
expansion factor

pa’1 ) = constant (10.56)

Special cases:

e dust: w = 0 gives pga® = constant
Thus, the mass in a comoving volume is constant.



10.4 Some cosmological models

141

e radiation: w = % gives pra* = constant
Thus, the radiation energy density decreases faster than the
case with dust when the universe is expanding. The energy
in a comoving volume is decreasing because of the thermo-
dynamic work on the surface. In a remote past, the density
of radiation must have exceeded the density of dust:

Pdoag Zpda3
Proag :Pra4
pra’ _ prody
paa® _pdoag

The expansion factor when p, = pg:

Pro
a(ty) = —ap
Pdo
e Lorentz-invariant vacuum: w = —1 gives ppy = constant.

The vacuum energy in a comoving volume is increasing o< a?.

10.4 Some cosmological models

10.4.1 Radiation dominated model

The energy-momentum tensor for radiation is trace free. According to the Ein-
stein field equations the Einstein tensor must then be trace free:

ai+a®+k=0
. . (10.57)
(aa+kt) =0
Integration gives
aa+ kt = B (10.58)
Another integration gives
Lo 1,9
3¢ + §kt =Bt+C (10.59)

The initial condition a(0) = 0 gives C' = 0. Hence

a = /2Bt — kt2 (10.60)

For £ = 0 we have

B
a=V2Bt, Q=\/o (10.61)

The expansion velocity reaches infinity at ¢t = 0, (lim;—a = 00)
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a(t)
\‘”””‘w"‘”"“R\J””””w””””w

@]

O
N
o~
[@)]

time

10

Figure 10.2: In a radiation dominated universe the expansion velocity reaches

infinity at ¢t = 0.

pra* =K, a= V2Bt
4prB*? = K
According to the Stefan-Boltzmann law we then have
pr=0T* - 4B*cTH? = K =

= =
T2 t

where T is the temperature of the background radiation.

10.4.2 Dust dominated model

From the first of the Friedmann equations we have

(10.62)

(10.63)

(10.64)

(10.65)

8rG
a?+k= 7T—pa2
3
We now introduce a time parameter 7 given by
dt () = d 1d
— =aq - = -
dn g dt adn
. da lda
So: a=—=—-——
dt  adn
We also introduce A = % poag>. The first Friedmann equation then gives
8rG 8rG
ad® + ka = 7T—pa?’ = Tr—poao?’ =A

3 3

(10.66)
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Using n we get

1, da.,

2202 g

a(dn) ka

1 day, A

?(%) = (10.67)

—k
1d A A
2 k=2 - 2k
adn a a A
where we chose the positive root. We now introduce u, given by a = Au?, u =
V% We then get

da du
— =2Au— 10.
an ud77 (10.68)

which together with the equation above give
1 d 1
— o4ut = 21— ku
Au? dn u
) (10.69)
du 1
V1—ku? 2

This equation will first be integrated for £ < 0. Then k = —|k|, so that

Ty K (10.70)

/ du -
V14 kluz 2

or arcsinh(v/—ku) = 2 + K. The condition u(0) = 0 gives K = 0. Hence

ko am 1
0= sinh 5 = 2(coshn 1) (10.71)
or
__4 (coshn —1) (10.72)
@7 T o '

From egs. (10.43), (10.44) and (10.66) we have

87G m
A= ”Tpmo = 1220 — {20, (10.73)
Pecro

From egs. (10.45) and (10.46) we get
k= H3(Qmo — 1) (10.74)

Hence, the scale factor of the negatively curved, dust dominated universe model
is

Qn
0 (coshn —1) (10.75)

a(n) = 1= Q0

DO |
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Inserting this into eq. (10.65) and integrating with ¢(0) = n(0) leads to

. QmO
"~ 2Hp(1 — Qo )3/?

t(n) (sinhn —n) (10.76)

Integrating eg. (10.69) for £ = 0 leads to an Einstein-deSitter universe

Wi

a(t) = (%) (10.77)

Finally integrating eg. (10.69) for k£ > 0 gives, in a similar way as for k£ < 0

a(n) = %1?7%(1 — cosn) (10.78)
tn) 0 — sing) (10.79)

T 2Ho Qo — 1)3/2

We see that this is a parametric representation of a cycloid.

In the Einstein-deSitter model the Hubble factor is

a 21 21 2
=37 St (10.80)

The critical density in the Einstein-deSitter model is given by the first Fried-
mann equation:

H? = %pcr , k=0
3
\ (10.81)
3H? p
=, =2
pe 871G Per

Example 10.4.1 (Age-redshift relation for dust dominated universe with k = 0)

1+2z= @0 =a= 13?

a z
S w ) (10.82)

T a2 T T

Eq. (10.34) gives
(9)2 _ 87G  87G poay

a 3 3 d (10.83)

8rG 3

S e
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Figure 10.3: For £ = 1 the density is larger than the critical density, and the
universe is closed. For k& = 0 we have p = p and the expansion velocity of
the universe will approach zero as t — oco. For k = —1 we have p < p¢;. The
universe is then open, and will continue expanding forever.

Using HZ = 52C p, gives & = Hy(1 +2)%. From a = da e get:
d d d
=== (10.84)
@ ag  Ho(l+2)2

Integration gives the age of the universe:

1 [0 dz 21 1 0
tO:——/ - = [ (10.85)
Ho Joo (14 2)3 3H0[(1+z)%]°°

to = 3ty where the Hubble-time t; = Hio is the age of the universe, if the expansion
rate had been constant. 'Look-back-time’ to a source with redshift z is:

At:tH/OZ(L = gtH[l—#] (10.86)
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exp.factor a

Figure 10.4: ty is the age of the universe if the expansion had been constant,
BUT:The exp.rate was faster closer to the Big Bang, so the age is lower.

1
At =to[l — —= 10.87
O (10.88)
(1— 407
% =0,99 = z = 20,5 (10.89)
0

10.4.3 Friedmann-Lemaitre model

The dynamics of galaxies and clusters of galaxies has made it clear that far
stronger gravitational fields are needed to explain the observed motions than
those produced by visible matter (McGaugh 2001). At the same time it has
become clear that the density of this dark matter is only about 30% of the critical

timet
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density, although it is a prediction by the usual versions of the inflationary
universe models that the density ought to be equal to the critical density (Linde
2001). Also the recent observations of the temperature fluctuations of the cosmic
microwave radiation have shown that space is either flat or very close to flat
(Bernadis et.al 2001, Stompor et al. 2001, Pryke et al. 2001). The energy that
fills up to the critical density must be evenly distributed in order not to affect
the dynamics of the galaxies and the clusters.

Furthermore, about two years ago observations of supernovae of type Ia with
high cosmic red shifts indicated that the expansion of the universe is accelerating
(Riess et al. 1998, Perlmutter et al. 1999). This was explained as a result of
repulsive gravitation due to some sort of vacuum energy. Thereby the missing
energy needed to make space flat, was identified as vacuum energy. Hence, it
seems that we live in a flat universe with vacuum energy having a density around
70% of the critical density and with matter having a density around 30% of the
critical density.

Until the discovery of the accelerated expansion of the universe the standard
model of the universe was assumed to be the Einstein-DeSitter model, which is
a flat universe model dominated by cold matter. This universe model is thor-
oughly presented in nearly every text book on general relativity and cosmology.
Now it seems that we must replace this model with a new "standard model"
containing both dark matter and vacuum energy.

Recently several types of vacuum energy or so called quintessence energy
have been discussed (Zlatev, Wang and Steinhardt 1999, Carroll 1998). How-
ever, the most simple type of vacuum energy is the Lorentz invariant vacuum
energy (LIVE), which has constant energy density during the expansion of the
universe (Zeldovich 1968, Grgn 1986). This type of energy can be mathemati-
cally represented by including a cosmological constant in Einstein’s gravitational
field equations. The flat universe model with cold dark matter and this type of
vacuum energy is the Friedmann-Lemaitre model.

The field equations for the flat Friedmann-Lemaitre is found by putting
k = p =0 in equation (10.35). This gives

. .2
a a
2—4+ —==A 10.90
. ( )
Integration leads to
A
aa? = §a3 + K (10.91)

where K is a constant of integration. Since the amount of matter in a volume
comoving with the cosmic expansion is constant, pyra® = paoal, where the
index 0 refers to measured values at the present time. Normalizing the expansion
factor so that ap = 1 and comparing eqgs.(10.42) and(10.91) then gives K =
(87G/3)ppro. Introducing a new variable z by a® = z? and integrating once
more with the initial condition a(0) = 0 we obtain

3K t 2
3 3 2
a = SI1I. (t)’ A = (09)
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The vacuum energy has a constant density ps given by
A =8wGpy (10.93)

The critical density, which is the density making the 3-space of the universe flat,

is
3H?

8rG
The relative density, i.e. the density measured in units of the critical density, of
the matter and the vacuum energy, are respectively

Der = (10.94)

8tG

Oy = pi - TH’;M (10.95)
A

0, = pp_A:_3H2 (10.96)

Since the present universe model has flat space, the total density is equal to the
critical density, i.e. Q37 +Qx = 1. In terms of the values of the relative densities
at the present time the expression for the expansion factor takes the form

. t Q 1-— QAO
a = AY3sinh?/3 (—> ) A=M0 - 10.97
tA Qo Qa0 ( )

Using the identity sinh(z/2) = /(coshx — 1)/2 this expression may be written
A 2t
a’ = 3 [cosh (—) — 1] (10.98)

The age to of the universe is found from a(typ) = 1, which by use of the formula
arctanh x = arcsinh(xz/v/1 — x2), leads to the expression

to = taarctanh v/Qxg (10.99)

Inserting typical values tq = 15 - 10%years, Qp9 = 0.7 we get A = 0.43, tp =
12-10%years. With these values the expansion factor is a = 0.75 sinh?/3(1.2t /).
This function is plotted in fig. 10.5. The Hubble parameter as a function of
time is

H = (2/3tp) coth(t/ty) (10.100)
Inserting to = 1.2t5 we get Htg = 0.8 coth(1.2t/tp), which is plotted in fig. 10.6
The Hubble parameter decreases all the time and approaches a constant value
H,, = 2/3ty in the infinite future. The present value of the Hubble parameter

1S

I 2
0=
3tav o

The corresponding Hubble age is ¢y = (3/2)tx+v/Qa0- Inserting our numerical
values gives Hy = 64km/ sechc_1 and tpo = 15.7 - 10%years. In this universe
model the age of the universe is nearly as large as the Hubble age, while in
the Einstein-DeSitter model the corresponding age is togp = (2/3)tmo = 10.5 -

(10.101)
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Figure 10.5: The expansion factor as function of cosmic time in units of the age
of the universe.
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Figure 10.6: The Hubble parameter as function of cosmic time.
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10%years. The reason for this difference is that in the Einstein-DeSitter model
the expansion is decelerated all the time, while in the Friedmann-Lemaitre model
the repulsive gravitation due to the vacuum energy have made the expansion
accelerate lately (see below). Hence, for a given value of the Hubble parameter
the previous velocity was larger in the Einstein-DeSitter model than in the
Friedmann-Lemaitre model.

The ratio of the age of the universe and its Hubble age depends upon the
present relative density of the vacuum energy as follows,

to B garc tanh /Qag
tHo 3 Vo

This function is depicted graphically in fig. 10.7 The age of the universe increases

(10.102)

to/tHo
2
|
1.75 L
1.5 |
1.25 |

1

0.75

0.5 r

0.25 ¢

L " n A l ﬂAO
0.2 - 0.4 0.6 0.8 1

Figure 10.7: The ratio of the age of the universe and the Hubble age as function
of the present relative density of the vacuum energy.

with increasing density of vacuum energy. In the limit that the density of the
vacuum approaches the critical density, thereis no dark matter, and the universe
model approaches the DeSitter model with exponential expansion and no Big
Bang. This model behaves in the same way as the Steady State cosmological
model and is infinitely old.

A dimensioness quantity representing the rate of change of the cosmic ex-
pansion velocity is the deceleration parameter, which is defined as ¢ = —i/aH?>.
For the present universe model the deceleration parameter as a function of timeis

9= 31— 3tanh(t/n)] (10.103)

which is shown graphically in fig. 10.8 The inflection point of time ¢; when
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Figure 10.8: The deceleration parameter as function of cosmic time.

deceleration turned into acceleration is given by ¢ = 0. This leads to
t1 = tpaarctanh(1/v/3) (10.104)

or expressed in terms of the age of the universe

h(1
_ arctan (1/V/3) . (10.105)
arctanh v/Qxo
The corresponding cosmic red shift is
ago 2QAO 1/3
t)=—2 —1=(-"20 ) 1 10.1
At =26y (1 - QAO) (10-106)

Inserting Qa9 = 0.7 gives t1 = 0.54ty and z(t; = 0.67.

The results of analysing the observations of supernova SN 1997 at z = 1.7,
corresponding to an emission time ¢, = 0.30tg = 4.5 - 10°years, have provided
evidence that the universe was decelerated at that time (Riess n.d.). M.Turner
and A.G.Riess (Turner and Riess 2001) have recently argued that the other
supernova data favour a transition from deceleration to acceleration for a red
shift around z = 0.5.

Note that the expansion velocity given by Hubble’s law, v = Hd, always
decreases as seen from fig. 10.6. This is the velocity away from the Earth of the
cosmic fluid at a fixed physical distance d from the Earth. The quantity @ on the
other hand, is the velocity of a fixed fluid particle comoving with the expansion
of the universe. If such a particle accelerates, the expansion of the universe is
said to accelerate. While H tells how fast the expansion velocity changes at a



152

Chapter 10. Cosmology

fixed distance from the Earth, the quantity @ represents the acceleration of a
free particle comoving with the expanding universe. The connection between
these two quantities are & = a(H + H?).

The ratio of the inflection point of time and the age of the universe, as given
in eq.(10.105), is depicted graphically as function of the present relative density
of vacuum energy in fig. 10.9 The turnover point of time happens earlier the

t1/to0
2

1.75 ¢
1.5 +

1.25 ¢

0.75 r
0.5

0.25 +

“ i 1 I L L i QA
0.2 0.4 0.6 0.8 1 0

Figure 10.9: The ratio of the point of time when cosmic decelerations turn over
to acceleration to the age of the universe.

greater the vacuum density is. The change from deceleration to acceleration
would happen at the present time if Q59 = 1/3.

The red shift of the inflection point given in eq.(10.106) as a function of
vacuum energy density, is plotted in fig. 10.10 Note that the red shift of future
points of time is negative, since then a > ag. If Qp¢ < 1/3 the transition to
acceleration will happen in the future.

The critical density is

per = pa tanh™2(t/ty) (10.107)

This is plotted in fig. 10.11. The critical density decreases with time.
Eq. (10.106) shows that the relative density of the vacuum energy is

Qp = tanh?(t/ty) (10.108)

which is plotted in fig. 10.12. The density of the vacuum energy approaches
the critical density. Since the density of the vacuum energy is constant, this is
better expressed by saying that the critical density approaches the density of
the vacuum energy. Furthermore, since the total energy density is equal to the
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Figure 10.10: The cosmic red shift of light emitted at the turnover time from
deceleration to acceleration as function of the present relative density of vacuum
energy.
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Figure 10.11: The critical density in units of the constant density of the vacuum
energy as function of time.
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Figure 10.12: The relative density of the vacuum energy density as function of
time.

critical density all the time, this also means that the density of matter decreases
faster than the critical density. The density of matter as function of time is

pu = pasinh™2(t/ty) (10.109)

which is shown graphically in fig. 10.13 The relative density of matter as func-
tion of time is
Qur = cosh™2(t/ty) (10.110)

which is depicted in fig. 10.14 Adding the relative densities of fig. 10.13 and
fig. 10.14 or the expressions (10.107) and (10.109) we get the total relative
density Qror = Qp +Qp = 1.

The universe became vacuum dominated at a point of time ¢t when pj(t2) =
pu(t2). From eq.(10.109) follows that this point of time is given by sinh(ty/tp) =
1. According to eq.(10.99) we get

arcsinh(1)
= t 10.111
arctanh(y/Qxp) 0 ( )
From eq.(10.97) follows that the corresponding red shift is
2(ty) = A7V3 -1 (10.112)

Inserting Q9 = 0.7 gives to = 0.73tp and z(t2) = 0.32. The transition to
accelerated expansion happens before the universe becomes vacuum dominated.

Note from eqgs.(10.103) and (10.108) that in the case of the flat Friedmann-
Lemaitre universe model, the deceleration parameter may be expressed in terms
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Figure 10.13: The density of matter in units of the density of vacuum energy as
function of time.
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Figure 10.14: The relative density of matter as function of time.
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of the relative density of vacuum only, ¢ = (1/2)(1 — 3Q4). The supernova Ia
observations have shown that the expansion is now accelerating. Hence if the
universe is flat, this alone means that Q9 > 1/3.

As mentioned above, many different observations indicate that we live in a
universe with critical density, where cold matter contributes with about 30%
of the density and vacuum energy with about 70%. Such a universe is well
described by the Friedmann-Lemaitre universe model that have been presented
above.

However, this model is not quite without problems in explaining the observed
properties of the universe. In particular there is now much research directed at
solving the so called coincidence problem. As we have seen, the density of the
vacuum energy is constant during the expansion, while the density of the mat-
ter decreases inversely proportional to a volume comoving with the expanding
matter. Yet, one observes that the density of matter and the density of the
vacuum energy are of the same order of magnitude at the present time. This
seems to be a strange and unexplained coincidence in the model. Also just at
the present time the critical density is approaching the density of the vacuum
energy. At earlier times the relative density was close to zero, and now it changes
approaching the constant value 1 in the future. S. M. Carroll (Carroll 2001) has
illustrated this aspect of the coincidence problem by plotting Q4 as a function
of In(t/tp). Differentiating the expression (10.108) we get

tadQn _ sinh(t/ty)
2 dt  cosh3(t/ty)

(10.113)

which is plotted in fig. 10.15

Putting 2y = 0 we find that the rate of change of Q4 was maximal at
the point of time ¢; when the deceleration of the cosmic expansion turned into
acceleration. There is now a great activity in order to try to explain these coinci-
dences by introducing more general forms of vacuum energy called quintessence,
and with a density determined dynamically bythe evolution of a scalar field
(Turner 2001).

However, the simplest type of vacuum energy is the LIVE. One may hope
that a future theory of quantum gravity may settle the matter and let us un-
derstand the vacuum energy. In the meantime we can learn much about the
dynamics of a vacuum dominated universe by studying simple and beautiful
universe models such as the Friedmann-Lemaitre model.

10.5 Inflationary Cosmology

10.5.1 Problems with the Big Bang Models
The Horizon Problem

The Cosmic Microwave Background (CMB) radiation from two points A and B
in opposite directions has the same temperature. This means that it has been
radiated by sources of the same temperature in these points. Thus, the universe
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Figure 10.15: Rate of change of {25 as function of ln(%). The value ln(%) = —40
corresponds to the cosmic point of time tg ~ 1s.

must have been in thermic equilibrium at the decoupling time, t; = 3-10°years.
This implies that points A and B, “at opposite sides of the universe”, had been
in causal contact already at that time. I.e., a light signal must have had time to
move from A to B during the time from ¢t = 0 to t = 3 - 10° years. The points
A and B must have been within each other’s horizons at the decoupling.

Consider a photon moving radially in space descibed by the Robertson-
Walker metric (10.14) with £ = 0. Light follows a null geodesic curve, i.e. the
curve is defined by ds? = 0. We get

ar— 2 (10.114)

a(t)

The coordinate distance the photon has moved during the time ¢ is

t
dt
Ar = / —. (10.115)
o alt)
The physical distance the light has moved at the time ¢ is called the horizon
distance, and is
Ih = a(t)AL = a(t) / Lt
h=a =a —.
o a(t)
To find a quantitative expression for the “horizon problem”, we may consider
a model with critical mass density (Euclidian spacelike geometry.) Using p = wp
and () = 1, integration of equation (10.36) gives

(10.116)

a o t3. (10.117)
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Inserting this into the expression for [, and integrating gives

_3w+3t
S 3w+1"

h (10.118)
Let us call the volume inside the horizon the “horizon volume” and denote it by
Vy. From equation (10.118) follows that Vj o 3. At the decoupling time, the
horizon volume may therefore be written

tq

3
(Vi)a = <%> Vo, (10.119)
where Vj is the size of the present horizon volume. Events within this volume
are causally connected, and a volume of this size may be in thermal equilibrium
at the decoupling time.

Let (Vp)q be the size, at the decoupling, of the part of the universe that
corresponds to the present horizon volume, i.e. the observable universe. For our
Euclidean universe, the equation (10.117) holds, giving

a’(tq) tg\ 7
=Yy =(= ) 10.12
(Vo)a (i) <t0> Vo (10.120)
From equations (10.119) and (10.120), we get
(V ) t 3w+11
0)d dy\ "t
=|(— . 10.121
(Vir)a <t0> ( )
Using that t; = 10™%¢y and inserting w = 0 for dust, we find % = 10%.

Thus, there was room for 10* causally connected areas at the decoupling time
within what presently represents our observable universe. Points at opposite
sides of our observable universe were therefore not causally connected at the
decoupling, according to the Friedmann models of the universe. These models
can therefore not explain that the temperature of the radiation from such points
is the same.

The Flatness Problem

According to eq. (10.42), the total mass parameter ) = p% is given by

k
Q-1=

a?’

(10.122)

By using the expansion factor (10.117) for a universe near critical mass
density, we get

Q-1 £\ 2(555%)
= (= . 10.123
o= (i) 0129
For a radiation dominated universe, we get
Q-1 t

= —. 10.124
Q-1 ¢ ( )
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Measurements indicate that g — 1 is of order of magnitude 1. The age of
the universe is about to = 10'7s. When we stipulate initial conditions for the
universe, it is natural to consider the Planck time, tp = 10~%3s, since this is
the limit to the validity of general relativity. At earlier time, quantum effects
will be important, and one can not give a reliable description without using
quantum gravitation. The stipulated initial condition for the mass parameter
then becomes that 2 — 1 is of order 107% at the Planck time. Such an extreme
fine tuning of the initial value of the universe’s mass density can not be explained
within standard Big Bang cosmology.

Other Problems

The Friedman models can not explain questions about why the universe is nearly
homogeneous and has an isotropic expansion, nor say anything about why the
universe is expanding.

10.5.2 Cosmic Inflation
Spontaneous Symmetry Breaking and the Higgs Mechanism

The particles responsible for the electroweak force, W* and Z° are massive
(causing the weak force to only have short distance effects). This was originally
a problem for the quantum field theory describing this force, since it made it
difficult to create a renormalisable theory'. This was solved by Higgs and Kibble
in 1964 by introducing the so-called Higgs mechanism.

The main idea is that the massive bosons W+ and Z° are given a mass by
interacting with a Higgs field ¢. The effect causes the mass of the particles to be
proportional to the value of the Higgs field in vacuum. It is therefore necessary
for the mechanism that the Higgs field has a value different from zero in the
vacuum (the vacuum ezpectation value must be non-zero).

Let us see how the Higgs field can get a non-zero vacuum expectation value.
The important thing for our purpose is that the potential for the Higgs field
may be temperature dependent. Let us assume that the potential for the Higgs
field is described by the function

V(9) = 58 + Ao (10.125)

where the sign of 2 depends on whether the temperature is above or below a
critical temperature T.. This sign has an important consequence for the shape
of the potential V. The potential is shown in figure 10.16 for two different
temperatures. For T > T,, u? > 0, and the shape is like in fig. 10.16(a), and
there is a stable minimum for ¢ = 0. However, for T < T,, ?> < 0, and the
shape is like in fig. 10.16(b). In this case the potential has stable minima for

¢ = +¢pp = i'—\% and an unstable maximum at ¢ = 0. For both cases, the

!The problem is that the Lagrangian for the gauge bosons can not include terms like m? W,f,
which are not gauge invariant
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potential V' (¢) is invariant under the symmetry transformation ¢ — —¢ (i.e.

V(9) = V(=¢)).

The “real” vacuum state of the system is at a stable minimum of the poten-
tial. For T' > T, the minimum is in the “symmetric” state ¢ = 0. On the other
hand, for T' < T, this state is unstable. It is therefore called a “false vacuum”.
The system will move into one of the stable minimas at ¢ = +¢g. When the
system is in one of these states, it is no longer symmetric under the change of
sign of ¢. Such a symmetry, which is not reflected in the vacuum state, is called
spontaneously broken. Note that from figure 10.16(b) we see that the energy of
the false vacuum is larger than for the real vacuum.

V(P) V(D)

(a) (b)

Figure 10.16: The shape of the potential depends on the sign of 2.
(a): Higher temperature than the critical, with u? > 0.
(b): Lower temperature than the critical, with p? < 0.

The central idea, which originated the “inflationary cosmology”, was to take
into consideration the consequences of the unified quantum field theories, the
gauge theories, at the construction of relativistic models for the early universe.
According to the Friedmann models, the temperature was extremely high in the
early history of the universe. If one considers Higgs fields associated with GUT
models (grand unified theories), one finds a critical temperature T, correspond-
ing to the energy k7. = 10'*GeV, where k is Boltzmann’s constant. Before
the universe was about t; = 10735 old, the temperature was larger than this.
Thus, the Higgs field was in the symmetric ground state. According to most of
the inflation models, the universe was dominated by radiation at this time.

When the temperature decreases, the Higgs potential changes. This could
happen as shown in figure 10.17. Here, there is a potential barrier at the critcal
temperature, which means that there can not be a classical phase transition.
The transition to the stable minimum must happen by quantum tunneling.
This is called a first order phase transition.
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V(D)

Figure 10.17: The temperature dependence of a Higgs potential with a first
order phase transition.

Guth’s Inflation Model

Alan Guth’s original inflation model (Guth 1981) was based on a first order
phase transition.

According to most of the inflationary models, the universe was dominated
by radiation during the time before 1073%s. The universe was then expanding so
fast that there was no causal contact between the different parts of the universe
that became our observable universe. Probably, the universe was rather homo-
geneous, with considerable spacelike variations in temperature. There was also
areas of false vacuum, with energy densities characteristic of the GUT energy
scale, which also controls it’s critical temperature. While the energy density
of the radiation decreased quickly, as a—*, the energy density of vacuum was
constant. At the time ¢ = 1073%s, the energy density of the radiation became
less than that of the vacuum.

At the same time, the potential started to change, such that the vacuum went
from being stable to being an unstable false vacuum. Thus, there was a first
order phase transition to the real vacuum. Because of the inhomogeneouty of
the universe’s initial condition, this happened with different speed at differing
places. The potential barrier slowed down the process, which happened by
tunneling, and the universe was at several places considerably undercooled, and
there appeared “bubbles” dominated by the energy of the false vacuum. These
areas acted on themselves with repulsive gravity.

By integrating the equation of motion for the expansion factor in such a
vacuum dominated bubble, one gets

a=elt,  H=,/ 8”?’)0. (10.126)
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By inserting the GUT value above, we get H = 6.6 - 103571, ie. H ! =
1.5 - 10~%s. With reference to field theoretical works by Sindney Coleman and
others, Guth argumented that a realistic duration of the nucleation process hap-
pening during the phase transition is 10733s. During this time, the expansion
factor increases by a factor of 10?8, This vacuum dominated epoch is called the
inflation era.

Let us look closer at what happens with the energy of the universe in the
course of it’s development, according to the inflationary models. To understand
this we first have to consider what happens at the end of the inflationary era.
When the Higgs field reaches the minimum corresponding to the real vacuum,
it starts to oscillate. According to the quantum description of the oscillating
field, the energy of the false vacuum is converted into radiation and particles. In
this way the equation of state for the energy dominating the development of the
expansion factor changes from p = —p, characteristic for vacuum, to p = %p,
characteristic of radiation.

The energy density and the temperature of the radiation is then increased
enourmously. Before and after this short period around the time t = 107335 the
radiation energy increases adiabatically, such that pa* = constant. According to
Stefan-Boltzmanns law of radiadion, p oc T*. Therefore, aT = constant during
adiabatic expansion. This means that during the inflationary era, while the
expansion factor increases exponentially, the energy density and temperature
of radiation decreases exponentially. At the end of the inflationary era, the
radiation is reheated so that it returns to the energy it had when the inflationary
era started.

It may be interesting to note that the Newtonian theory of gravitation does
not allow an inflationary era, since stress has no gravitational effect according
to it.

The Inflation Models’ Answers to the Problems of the Friedmann
Models

The horizon problem will here be investigated in the light of this model. The
problem was that there was room for about 10000 causally connected areas
inside the area spanned by our presently observable universe at the time. Let us
calculate the horizon radius /; and the radius a of the region presently within
the horizon, I;, = 15-10°ly = 1.5 - 10%%¢m, at the time t; = 107%%s when the
inflation started. From equation (10.118) for the radiation dominated period
before the inflatinary era, one gets

I, =2t = 6-10"%cm. (10.127)

The radius, at time ¢1, of the region corresponding to our observable universe,
is found by using that a o eff* during the inflation era from ¢; = 1073%s to
to = 107335, a o t2 in the radiation dominated period from ¢ to t3 = 10'!s,
and a  t3 in the matter dominated period from t3 until now, ¢y = 10'7s. This
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gives

Hty 3 3
e a2 (t3)? —28
=__ (= =) l(tg) =151 . 10.12
@ = —h <t3> <t0) n(to) 5-107*°cm (10.128)

We see that at the beginning of the inflationary era the horizon radius,
I, was larger than the radius a of the region corresponding to our observable
universe. The whole of this region was then causally connected, and thermic
equilibrium was established. This equilibrium has been kept since then, and
explains the observed isotropy of the cosmic background radiation.

We will now consider the flatness problem. This problem was the necessity,
in the Friedmann models, of fine tuning the initial density in order to obtain
the closeness of the observed mass density to the critical density. Again, the
inflationary models give another result. Inserting the expansion factor (10.126)
into equation (10.122), we get

Q-1= ie—””, (10.129)

where H is constant and given in eq. (10.126). The ratio between 2 — 1 at the
end of and the beginning of the inflationary era becomes
Q-1
Q-1

e~ 2H(t2—t1) _ (=56 (10.130)

Contrary to in the Friedmann models, where the mass density moves away
from the critical density as time is increasing, the density approaches the critical
density exponentially during the inflationary era. Within a large range of initial
conditions, this means that according to the inflation models the universe should
still have almost critical mass density.
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