8. Cosmology

Deals with the origin, evolution & structure of the Universe <u>as a whole</u>

[unlike astro-(particle) physics]

Here: apply GR to entire Universe!

Brief history

'early' Various conceptions, greatly varying over time and cultural background: cyclic / (in)finite in time (in)finite in space geo-/ heliocentric/ "central fire" (≠ sun/earth!)

middle ages: finite and static

- ~1700 Newton: infinite, steady-state; homogeneous on large scales
 - ⇒ grav. balanced, but unstable; Olbers Paradox
 - Einstein: static cosmological solution to GR (1915)
 - \Rightarrow uniformly curved, finite space; unstable like Newtonian cosmology needs Λ ("greatest blunder of my life")
- 1922-35 Friedmann, Lemaitre, Robertson, Walker: solutions to GR that describe a homogeneous, isotropic and expanding universe
 - 1929 Hubble: distant galaxies recede from us!
 - Bond, Gold, Hoyle: "steady state universe"
 - creation rate of matter ("out of nothing") balanced by space expansion rate

Hubble expansion

Observation: light from distant galaxies is redshifted

$$z \equiv \frac{\Delta \lambda}{\lambda} \simeq H_0 d$$

 \Rightarrow **All** galaxies are receding from us! (Doppler effect: $\Delta \lambda / \lambda = v$)

30000

Hubble expansion

Standard interpretation: space itself expands:

This explains why everything moves away "from us":

$$1+z=\frac{\lambda_{\rm obs}}{\lambda_{\rm em}}=\frac{a(t_0)}{a(t_{\rm em})}=1+\underbrace{\begin{pmatrix} t_0-t_{\rm em} \end{pmatrix}}_{(c=1!)}\underbrace{\begin{vmatrix} \dot{a}\\ a \end{vmatrix}_{t_0}}-(t_0-t_{\rm em})^2\frac{\ddot{a}}{a}\Big|_{t_0}+\dots$$

The transition from `philosophy' to science

```
Penzias, Wilson: detection of isotropic CMBR
 1964
                         ⇒ Big Bang model "wins"; Noble prize 1978 "by accident"
        Guth, Linde, ...: "inflation" - early period of accelerated expansion
>1980
        COBE team: measurement of CMBR anisotropies
 1990
                      Noble prize 2006
        Perlmutter, Schmidt, Riess: expansion of universe currently accelerates
 1998
                                     Noble prize 2011
        WMAP: successor of COBE
>2001
                 ⇒ beginning of "precision cosmology"
        first (cosmological) data from PLANCK ...
 2013
 to be
 continued...!
```

Cosmology as a science is a rather young discipline which has become data driven and enormously successful during the last 2 decades!

The Cosmological Concordance model

Cosmological Principle

Observations:

the universe looks the same in all directions (on large scales)

| Isotropy in one point

"Copernican" principle:
 we do not live in a special place
 Isotropy in every point

Cosmological principle:

On large scales, the universe is homogeneous and isotropic

Translated to GR: space (not spacetime) is maximally symmetric!

[isotropy \rightsquigarrow 3 rotations; homogeneity \rightsquigarrow 3 translations; 6 = maximal number of Killing vectors in 3D!]