
Solutions to final exam in FYS4160

Problem 1
a) By definition of the inverse, gµρgρν = δµν = const. Therefore, ∇σ(gµρgρν) =
∇σ(gµρ)gρν + gµρ∇σgρν = 0 (Leibniz rule)  ∇σ(gµρ)gρν = 0  ∇σ(gµρ) = 0.

b) Using the result from a), ∇µVµ = gµρ∇ρ(gµσV
σ) = gµρgµσ∇ρ(V

σ) = δρσ∇ρV
σ =

∇ρV
ρ = 0. Note that you cannot argue that VµV

µ is covariantly constant which is
the case for gµρgρν = δµν as in part a).

Problem 2
The stress-energy tensor of a perfect fluid in a frame moving with 4-velocity uµ with
respect to the fluid rest-frame is given by

T µν = (ρ+ p)uµuν + pgµν .

Its trace is therefore given by T µµ = (ρ+ p)uµuµ + pgµµ = −(ρ+ p) + 4p = −ρ+ 3p = 0
(the last step being valid only for radiation). As should have been expected for a
scalar quantity like the trace, this is independent of the frame. We would get the
same result if we actually did the boost along the x-axis.
Marking: 0.5 pt for correct T µµ, 0.5 for ρ = 3p. 2 pts if T µµ is correctly
derived (-0.5 if not argued why it must be the same in all frames).

Problem 3
a) The Einstein equivalence principle (EEP) states that in small enough regions of
spacetime, the laws of physics reduce to those of special relativity. It is therefore
impossible to detect the existence of a gravitational field by means of local exper-
iments. The principle implies that gravity is universal. We cannot escape gravity,
i.e. there exists no gravitationally neutral object (which is the decisive difference to
other forces). This implies that the notion of acceleration due to gravity is ambiguous
and that we should define unaccelerated motion as motion in free fall. Since a force
is something that leads to acceleration, by Newton’s second law, we conclude that
gravity is not a force but rather a manifestation of a fundamental feature of spacetime
– its curvature.
Marking: 1 pt for principle. 2 for geometry connection. 1 for difference.
ALWAYS: minus points for wrong statements

b) Riemannian manifolds are mathematical objects that capture the idea of being lo-
cally flat, such as Euclidian space or Minkowski space (the only freedom we have here
is the signature of the metric!). Such as the EEP suggests that the laws of physics
reduce to those of special relativity in small enough regions of spacetime, Riemannian
manifolds with the correct signature can be described by (flat) Minkowski space in
small patches of the manifold. Locally, i.e. by means of only one test particle, we
cannot detect gravity which corresponds to the fact that we can always find locally
inertial coordinates on a Riemannian manifold. We can however map out a gravi-
tational field with at least two test particles (via the observed tidal forces), which
corresponds to the fact the one cannot in general define a single inertial reference
frame for two points on the manifolds that are separated by a finite distance (which
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led us to the construction of the curvature tensor, and geodesic deviation correspond-
ing to tidal forces). Therefore, the definition of a Riemannian manifold entails an
atlas, i.e. a collection of patches that are locally flat and that can be sewed together
smoothly even though the manifold can have non-vanishing (intrinsic) curvature. Also
the topology (i.e. the global shape of the manifold) can be non-trivial – which is not
a direct consequence of the equivalence principle, but certainly does not violate the
requirement of locality.
Marking: 0.5 pt for locally flat = locally SR. 0.5 for Minkowski vs. Euclid-
ian distinction. 1 for existence of local coordinates = impossible to test
gravity with 1 testparticle. 1 for non-local properties.

c) The electromagnetic force does not have the same universality as gravity does.
Even in such a toy universe we would be able to single out gravity: The curvature
of spacetime effects the trajectory of all particles, i.e. every particle has an identical
gravitational charge, but the electromagnetic force does not effect electrically neutral
objects (to which elementary particles of opposite charge can combine). Therefore,
electromagnetism cannot be represented as something as intrinsic/universal as the
curvature of spacetime.
This conclusion changes if only particles with the same sign of the charge were to
exist, because then there would be no neutral particles. There is still a difference,
however, because charge is quantized. This implies that the charge of a bound system
is the same as the sum of the charges of the components – while this is not true for
the mass. This difference could for example be tested in a binary system of two
compound objects that rotate around each other: increasing the size (mass/charge)
of each of the objects by adding more particles would imply that fraction of energy
radiated in gravitational and electromagnetic eaves changes.
Marking: 1 pt for correct conclusion + correct argument in each case.

Problem 4
The four-velocity Uµ = dxµ/dτ satisfies UµU

µ = −1. For a stationary observer
(U i = 0) in Schwarzschild coordinates, this implies

−1 = UµU
µ = g00(U0)2 = −

(
1− 2GM

r

)−1

 U0 =

(
1− 2GM

r

)−1/2

. (1)

The acceleration aµ is given by the covariant directional derivative of the 4-velocity:

aµ =
D

dτ
Uµ = Uν∇νU

µ = Uν∂νU
µ + ΓµνρU

νUρ (2)

(1)
= Γµ00

(
1− 2GM

r

)−1

(3)

=
1

2
gµρ (∂tg0ρ + ∂tgρ0 − ∂ρg00)

(
1− 2GM

r

)−1

(4)

= −1

2

(
1− 2GM

r

)−1

gµρδrρ∂rg00 , (5)
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where the last step follows because the Schwarzschild metric is static (and g00 only
depends on r). With grr = −g00 this simplifies to

aµ =

(
0,−1

2
∂r

(
1− 2GM

r

)
=
GM

r2
, 0, 0

)
(6)

because the Schwarzschild metric is diagonal. The magnitude of the actual accelera-
tion felt by the observer is given by the magnitude of the spatial acceleration,

a =
√
−aiai =

(
1− 2GM

r

)− 1
2 GM

r2
. (7)

For r � 2GM , this agrees as expected with the Newtonian acceleration (GM/r2), but
for smaller distances the actual acceleration is larger. Approaching the Schwarzschild
radius, it would require an infinite amount of acceleration to escape.
Marking: 1 pt each for arriving at (1), (2), (6), (7). One for the physics
discussion.

Problem 5
a) The stated geodesic equation takes the form of a conservation equation, 1

2
ṙ2 +

Veff(r) = const. For a circular orbit we have ṙ = 0, so Veff = 1
2
L2r−2−GML2r−3 must

have an extremum and hence 0 = V ′eff(rc) = −L2r−3
c + 3GML2r−4

c  rc = 3GM . We
still need to check that the orbit is indeed unstable by finding the sign of the second
derivative: V ′′eff = 3L2r−4 − 12GML2r−5  V ′′eff(rc) = L2(GM)−4 (3/34 − 12/35) =
−L2(3GM)−4 < 0.
Marking: 1 pt for identifying circular orbits, 1 for rc from first derivative,
1 for stability.

b) The four-velocity uµ = dxµ/dλ ≡ ẋµ is light-like. For the Schwarzschild metric:

0 = uµu
µ = gttṫ

2 + grrṙ
2 + gθθθ̇

2 + gφφφ̇
2 (8)

θ=π
2= −

(
1− 2GM

r

)
ṫ2 +

(
1− 2GM

r

)−1

ṙ2 + r2φ̇2 (9)

For circular motion, we have ṙ = 0. Hence,

dt

dφ
=
ṫ

φ̇
=

r√
1− 2GM

r

r=rc= 3
√

3GM . (10)

Integrating over one revolution yields

∆t =

∫ 2π

0

dφ
dt

dφ
= 6
√

3π GM . (11)

The proper time measured by a stationary observer (dr = dφ = dθ = 0) in the
Schwarzschild geometry is given by

−dτ 2 = −
(

1− 2GM

r

)
dt2 (12)
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At r = rc, this becomes dτ/dt = 1/
√

3, such that our stationary observer sees the
emitted photon again after ∆T = 6π GM .

For a distant observer, r � 2GM , the eigentime coincides with the coordinate
time, so she measures that the photon takes ∆t = 6

√
3π GM to move once around

the black hole.
Marking: 1 pt each for arriving at (9), ’circular’ means ṙ = 0, (10), 1 each
for the two results.

c) First we need to transform the equation for r = r(λ) given in the problem into
one for r = r(φ), by noting that ṙ = (dr/dφ)φ̇ ≡ r′φ̇:

E =
1

2
r′

2
φ̇2 +

L2

2r2
− GML2

r3
(13)

=
L2

2r4
r′

2
+
L2

2r2
− GML2

r3
. (14)

We now simplify this equation by taking the derivative with respect to φ on both
sides (as we did when deriving the perihelion precession):

0 = −2L2

r5
r′

3
+
L2

r4
r′r′′ +

L2

r3
r′ − 3GML2

r4
r′ (15)

 0 = −2

r
r′

2
+ r′′ + r − 3GM . (16)

First, we note that r = rc = 3GM indeed solves this equation. Then we introduce,
as indicated in the problem, a small perturbation η, by substituting r = 3GM(1 + η)
and keeping only linear terms in η:

0 = −6GM

1 + η
η′

2
+ 3GMη′′ + 3GM(1 + η)− 3GM (17)

' 3GM(η′′ + η) (18)

 0 =
d2η

dφ2
+ η . (19)

The solution to this equation is η(φ) = Aeφ+Be−φ, which exhibits exponential growth
in φ (because the solution proportional to B will exponentially decay). In other words,
the size of the perturbation η grows without bound – instead of oscillating as it would
in case of a stable orbit – so the circular orbit at r = rc is unstable.
Marking: 1 pt for re-writing E as function of r, r′, 1 for simplifying (+
not that that rc indeed OK), 1 for final equation for η, 1 for solution +
intepretation

Problem 6
a) We first calculate the Christoffel symbols, keeping only terms linear in hµν :

Γµρσ =
1

2
gµλ (gρλ,σ + gσλ,ρ − gρσ,λ) (20)

=
1

2
gµλ (hρλ,σ + hσλ,ρ − hρσ,λ) (21)

' 1

2
ηµλ (hρλ,σ + hσλ,ρ − hρσ,λ) . (22)
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The Christoffel symbols are thus linear in hµν , and the Ricci tensor to linear order
becomes

Rµν = Rρ
µρν ' ∂ρΓ

ρ
νµ − ∂νΓρρµ (23)

' 1

2
ηρλ (hνλ,µρ + hµλ,νρ − hνµ,λρ)−

1

2
ηρλ (hρλ,µν + hµλ,ρν − hρµ,λν) (24)

' 1

2

(
h ρ
ν ,µρ + h ρ

µ ,νρ − h ρ
νµ, ρ − h,µν − h ρ

µ ,ρν + hρµ,ρν

)
(25)

The raising of indices in the last step was done with respect to the Minkowski metric,
which is consistent because all terms are already first order in hµν and the neglected
terms hence second order. The underlined terms cancel, because partial derivatives
commute, which leaves us with the result stated in the problem once we use Einstein’s
equations in vacuum, Rµν = 0.
Marking: 1 pt each for Christoffels, correct use of first order in hµν, result
for Rµν, application to vacuum equations

b) The equation is linear in hµν , so it sufficed to replace hµν → ∂µξν + ∂νξµ in the
expression for Rµν , and check that the result vanishes for any 4-vector field ξµ:

1

2

(
ξ ρ
ν, µρ − ξ ρ

ν,µ ρ − ξ ρ
ρ, µν + ξ ρ

ρ,µ ν

)
+

1

2

(
ξ ρ
ρ,νµ − ξ ρ

µ,ν ρ − ξ ρ
ρ, µν + ξ ρ

µ,ρ ν

)
(26)

Now, because partial derivatives commute, the 1st and 2nd terms cancel. The same
goes for the 3rd and 4th terms, as well as for the 5th and 6th, and 7th and 8th terms. The
significance of this observation is that not all 10 components of hµν (recall that the
metric is symmetric!) are physical degrees of freedom. This is in principle the same as
in the full theory, which is invariant under general coordinate transformations. In the
linearized version of the theory, only a subgroup of these symmetries remains, which
takes the form of gauge transformations (in analogy to the case of electrodynamics,
which is a theory for a 4-vector field Aµ that stays invariant under the replacement
Aµ → Aµ + ∂µα for any scalar spacetime function α).
Marking: 2 pts for correct proof, 1 for interpretation

c) One of the ways to fix the gauge freedom derived in b) is known as the Lorenz (no
‘t’ !) gauge, ∂σ∂νh

σ
µ+∂σ∂µh

σ
ν−∂µ∂νh = 0 , from which the statement in the problem

immediately follows. To see that this is indeed always possible to achieve, start from
a given hµν and define h̃µν ≡ hµν + ∂(µξν). Then,

0
!

= ∂σ∂ν h̃
σ
µ + ∂σ∂µh̃

σ
ν − ∂µ∂ν h̃ (27)

= 2∂σ∂(νh
σ
µ) − ∂µ∂νh+ (∂σ∂ν∂

σξµ + ∂σ∂ν∂µξ
σ)

+(∂σ∂µ∂
σξν + ∂σ∂µ∂νξ

σ)− 2∂µ∂ν∂
σξσ (28)

 �∂(µξν) =
1

2
∂µ∂νh− ∂σ∂(µh

σ
ν) (29)

This is a set of inhomogenous partial differential equations for ξµ, with a uniquely
determined (though typically hard to find in practice) solution for any set of functions
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hµν .
The wave equation �f(t,x) = (−∂2

t +∇2)f = 0 is satisfied for f(t,x) = g(x − et),
where e is a unit 3-vector and g is an arbitrary function from R3 to R. This describes
a wave package of the form g(x) moving with speed c = 1 in the direction of e (for a
different speed, e in the argument would need to be multiplied with v 6= 1). In our
case f = hµν are the metric components – so this must describe a gravitational wave.
Marking: 2 pts each for a fully correct argument: i) why � and ii) why
grav. waves

d) A monopole describes a spherically symmetric solution. The wave propagates in
vacuum, but by Birkhoff’s theorem any spherically symmetric vacuum solution must
be static, i.e. cannot describe propagation. A dipole would imply a mass-center that
moves back and forth – which is impossible for an isolated system due to 4-momentum
conservation (unlike the case of electromagnetism, where the total charge of a system
can move back and forth if tied e.g. to a spring). Therefore, the first contribution in
the multipole expansion comes from the quadrupole term.
Marking: 1 pt each

Problem 7
a) The particle horizon is the maximal distance that any particle (or piece of in-
formation) can have propagated since t = 0 (which, as we recall, is defined by
a(t → 0) → 0), and hence equal to the maximal radius of the past light cone. It
is defined by

dH(t0) ≡ a(t0)

∫ t0

0

dt

a(t)
. (30)

The Hubble horizon, or better just the inverse ‘Hubble rate’ is defined by

H−1 ≡ a/ȧ . (31)

While its significance is less fundamental than that of dH , H−1 can be thought of as
a ’local’ version of dH . For typical matter contents, for example, we have to a good
approximation H−1(t) ∼ dH(t) – see problems b) and c). The Hubble rate H is also
the factor of proportionality with which (not too!) distant objects appear redshifted
the further they are away.
Marking: 1 pt each for def and significance

b) For a(t) ∝ tn, n < 1, we have

dH(t)

a(t)
=

∫ t

0

dt′

a(t)(t′/t)n
=

t

(1− n)a
∝ t1−n ∝ a1/n−1 (32)

1

aH
=

1

ȧ
=

t

na
=

1− n
n

dH
a

(33)

Marking: 1 pt each

c) Exponential growth, a ∝ exp ct, simply implies H = c – so the Hubble rate is
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constant in this case. Thus,

dH(t)

a(t)
=

∫ t

0

dt′

a(t) exp[H(t′ − t)] =
eHt

aH

[
e−Ht

′
]0

t
=

1

aH

(
1− e−Ht

)
(34)

1

aH
=

1

ȧ
=

eHt

eHt − 1

dH
a

(35)

Marking: 0.5 pt each, 1 for correct use of relation to H

log �

log a
a0aeqaI,end

matter 
domination

radiation 
domination

inflation

(aH)�1

/ a�1/2

/ a

/ a�1

aenteraexit

d) The solid black line shows how the comoving horizon – calculated in b) – evolves
with the scalefactor a: everything above the line is outside, everything below the
line inside the Horizon. A given comoving (or coordinate) distance, on the other
hand, does not change with the expansion of the universe, as indicated by the dotted
lines. Perturbations to a perfectly homogeneous universe can be described by their
spatial extent and hence a given scale λ – which corresponds to the physical extent of
that region today (in an exact NFW spacetime, it does not make sense to distinguish
different physical scales!). As apparent from the figure, any such perturbation that we
can observed today (at a0 = 1) inside the horizon has been outside the horizon at some
earlier time – which violates causality because there is no possible causal mechanism
that could have created such perturbations at such early times / super-horizon scales.
This conclusion can be evaded if the evolution of the Horizon at early time is changed
such that those scales actually have been inside the horizon nevertheless, at even
earlier times. As an example, this is shown for the case of exponential growth as
calculated in c) (dashed red line): the specific scale λ indicated with blue is then
inside the horizon for a < aexit (where some causal mechanism could produce a
perturbation at that scale), outside for aexit < a < aenter (where no perturnations can
be causally affected) and then inside again for a > aenter (where we eventually can
observe it). Note that aexit and aenter depend on λ here! From this discussion, the
issue of causality violation could in general be resolved if only the comoving Horizon
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were to decrease in time:

0 >
d

dt

1

aH
=

d

dt

1

ȧ
= − ä

ȧ2
⇔ ä > 0 . (36)

Using the second Friedman equation, and a > 0, this is equivalent to requiring an
equation of state with sufficiently negative pressure

p < −ρ/3 . (37)

The simplest example is a cosmological constant, with p = −ρ, which leads to the
exponential growth studied in c).
Marking: 2pt for all aspects in the figure (in particular comoving scales
rather than physical – which we have seen the lecture), 1 for explanation
of causality violation, 0.5 for the connection to perturbations, 1 pt for
inflation condition leading to ä > 0, 0.5 for eq. of state.

8


