UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in Fys 4160 The general theory of relativity
Day of exam: May 31. Kl. 14.30. Sal 3D Silurveien 2
Exam hours: 4 hours
This examination paper consists of 9 page(s) including 7 pages with formulae. Appendices: 0
Permitted materials: $\mathbf{7}$ pages with formulae attached to the problems.

Make sure that your copy of this examination paper is complete before answering.

Problem 1

Let u^{α} be the components of the tangent vector field of a time-like curve.
a) Show that $g_{\alpha \beta} u^{\alpha} u^{\beta}$ is constant along the curve. What is the value of the constant?
b) Show that the geodesic equation can be written in the following form: $\frac{d u_{\alpha}}{d s}-\frac{1}{2} \frac{\partial g_{\beta \gamma}}{\partial x^{\alpha}} u^{\beta} u^{\gamma}=0$.
c) Assume that the metric is static and the space is cylindrically symmetric with cylindrical coordinates (r, θ, z). What constants of motion are there then for a free particle?

Problem 2

Let $T^{\alpha \beta}=p \eta^{\alpha \beta}+\left(\rho+p / c^{2}\right) u^{\alpha} u^{\beta}$ be the components of the energy momentum tensor of an perfect fluid in flat space time with Minkowski metric $\eta_{\mu \nu}$. Here p is the pressure and ρ the mass density of the fluid, and u^{α} the components of its 4-velocity.
a) Explain why the conservation law $T^{\alpha \beta}{ }_{; \beta}=0$ in this case reduces to $T^{\alpha \beta}{ }_{\beta \beta}=0$.
b) We shall consider the Newtonian limit where p / c^{2} can be neglected compared to ρ in the second term of $T^{\alpha \beta}$, and the components of the 4-velocity of the fluid are $u^{\alpha} \approx(c, \vec{v})$ where \vec{v} is the ordinary velocity of a fluid element. Show that in this case the conservations law a) implies mass conservation as represented by the equation of continuity, $\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{v})=0$,
c) and momentum conservation as represented by the Euler equation of motion,

$$
\rho\left(\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v}\right)=-\nabla p .
$$

Page 2

Problem 3

Consider a De Sitter spacetime with coordinates (t, r) and line element

$$
d s^{2}=-c^{2} d t^{2}+e^{2 H t}\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

where the Hubble parameter H is constant.
a) Find the redshift of light emitter from a coordinate r as measured at a point of time t_{0} by an observer at the origin. The Hubble parameter H is assumed to be known.
b) What is the 4-acceleration of a reference particle at rest in the coordinate system? What does your result tell about the reference frame in which these coordinates are co-moving? Will an observer with constant radial coordinate r experience an acceleration of gravity?

Introducing coordinates (T, R) by the transformation

$$
R=r e^{H t}, T=t-\ln \left(1-H^{2} r^{2} e^{2 H t}\right) \text { or } r=\frac{R}{e^{H T} \sqrt{1-H^{2} R^{2} / c^{2}}}, e^{H t}=e^{H T} \sqrt{1-H^{2} R^{2} / c^{2}},
$$

the line element takes the form (you need not show this)

$$
d s^{2}=-\left(c^{2}-H^{2} R^{2}\right) d T^{2}+\frac{d R^{2}}{1-H^{2} R^{2} / c^{2}}+R^{2} d \Omega^{2}
$$

c) Find the redshift of light emitted from a coordinate R as measured by an observer at the origin. Why is your result different to the one in a)?
d) What is the 4-acceleration of a reference particle at rest in the coordinate system? What does your result tell about the reference frame in which these coordinates are co-moving? Will an observer with constant radial coordinate r experience an acceleration of gravity?
e) How does a reference particle with $r=r_{0}=$ constant move in the (T, R)-coordinate system.
f) How is the redshift of light explained in the (T, R)-coordinate system? How is it explained in the (t, r)-system?

