Lecture 11 19.02.18

Non-integrability of a simultaneity curve in a rotating frame

We have made a separation of the spacetime line-element, $d s^{2}$, in a spatial part, $d l^{2}$, and a temporal part, $c^{2} d \hat{t}^{2}$, according to $d s^{2}=d l^{2}-c^{2} d \hat{t}^{2}$, where

$$
d l^{2}=\left(g_{i j}-\frac{g_{i 0} g_{j 0}}{g_{00}}\right) d x^{i} d x^{j} \quad, \quad d \hat{t}=\sqrt{-g_{00}}\left(d x_{0}+\frac{g_{i 0}}{g_{00}} d x^{i}\right), \quad x_{0}=c t .
$$

As applied to the rotating reference frame R this gives

$$
d l^{2}=d r^{2}+\frac{r^{2}}{1-r^{2} \omega^{2} / c^{2}} d \theta^{2}+d z^{2} \quad, \quad d \hat{t}=\sqrt{1-\frac{r^{2} \omega}{c^{2}}}\left(d t-\frac{r^{2} \omega}{1-r^{2} \omega^{2} / c^{2}} d \theta\right) .
$$

Here $d t=0$ means simultaneity in the non-rotating laboratory system, F , and $d \hat{t}=0$ simultaneity in the rotating frame, R. The simultaneity of the laboratory frame is defined globally, but simultaneity in the rotating frame, R, is only defined locally. With $d \hat{t}=0$ we get

$$
d t=\frac{r^{2} \omega}{1-r^{2} \omega^{2} / c^{2}} d \theta
$$

which is not a total differential. This means that simultaneity in the rotating frame R cannot be defined around a closed curve about the axis. If define simultaneous events in R along a circle about the axis, we come to progressively later events in F as given by the formula for $d t$ above. Going around the circle we arrive at the point of departure at a later event than the one we started from. This means that the 3-space defined by simultaneity in R does not represent a simultaneity space in F. In a Minkowski diagram with reference to F the 3-space is shaped as shown in the figure below. It has a discontinuity.

Orthonormal basis field in the rotating frame

We saw in Lecture 9 how the spatial metric representing a simultaneity space of an observer with 4 -velocity \vec{u} was defined in terms of orthogonal basis vectors, where the time-like basis-vector was chosen to be the 4 -velocity of the observer. It has a magnitude c.

Let us define an orthonormal basis vector field co-moving with an observer at rest in an arbitrary reference frame. The 4 -velocity of the observer is \vec{u}. We choose as time-like unit basis vector

$$
\vec{e}_{\hat{0}}=(1 / c) \vec{u} .
$$

We shall express the orthonormal basis vectors in terms of the co-ordinate basis vectors in a c-ordinate basis $\left\{\vec{e}_{0}, \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ where \vec{e}_{0} is parallel to \vec{u}, and the spatial vectors need not be orthogonal to the time-like basis vector.

As shown in Lecture 9 a spacelike basis vector \vec{e}_{i} may be separated in one component

$$
\vec{e}_{|| |}=\frac{g_{i 0}}{g_{00}} \vec{e}_{0}
$$

along \vec{e}_{0} and one $\vec{e}_{i \perp}=\vec{e}_{i}-\vec{e}_{i| |}$ orthogonal to \vec{e}_{0}, i.e.

$$
\vec{e}_{i \perp}=\vec{e}_{i}-\frac{g_{i 0}}{g_{00}} \vec{e}_{0} .
$$

Since this vector has a magnitude $\left|\vec{e}_{i \perp}\right|=\sqrt{\vec{e}_{i \perp} \cdot \vec{e}_{i \perp}}=\sqrt{\gamma_{i i}}$, the corresponding unit vector is

$$
\vec{e}_{i}=\left(\gamma_{i i}\right)^{-1 / 2}\left(\vec{e}_{i}-\frac{g_{i 0}}{g_{00}} \vec{e}_{0}\right) .
$$

The second and third space-like vectors in the orthonormal basis are then given by

$$
\vec{e}_{\hat{j}} \cdot \vec{e}_{\hat{i}}=\vec{e}_{\hat{j}} \cdot \vec{e}_{\hat{0}}=0, \quad \vec{e}_{\hat{k}}=\vec{e}_{\hat{i}} \times \vec{e}_{\hat{j}} .
$$

Let us now consider the rotating reference frame, R. The coordinate transformation is

$$
T=t, \quad R=r, \quad \Theta=\theta+\omega t, \quad Z=z
$$

Hence the transformation from the coordinate basis vectors in F to those in R are

$$
\vec{e}_{t}=\frac{\partial T}{\partial t} \vec{e}_{T}+\frac{\partial \Theta}{\partial t} \vec{e}_{\Theta}=\vec{e}_{T}+\omega \vec{e}_{\Theta}, \vec{e}_{r}=\vec{e}_{R}, \quad \vec{e}_{\theta}=\vec{e}_{\Theta}, \vec{e}_{z}=\vec{e}_{Z} .
$$

Note that even if $T=t$ the basis vectors \vec{e}_{T} and \vec{e}_{t} have different directions. The vector field \vec{e}_{T} is directed along the world lines of the particles in F that are parallel to the cylinder axis in
the figure above while the vector field \vec{e}_{t} is directed along the world lines of the particles in R which has the spiral shape given by $\theta=$ constant shown in the Figure. The simultaneity space in F are the horizontal planes orthogonal to \vec{e}_{T}, and the simultaneity space in R is a succession of simultaneity spaces locally orthogonal to \vec{e}_{t}.

In order to find the orthonormal basis carried by an observer in R by means of the formulae above, we must first find the components of the 4 -velocity in the co-moving coordinate system in R. Since the observer is at rest in R, the time component is the only non-vanishing component. It follows from the line element in R as applied to a clock at rest that the 4 -velocity is

$$
\vec{u}=c \frac{d t}{d \tau} \vec{e}_{t}=\frac{c}{\sqrt{1-r^{2} \omega^{2} / c^{2}}} \vec{e}_{t} .
$$

Inserting the expressions for the components of the metric tensor and the spatial metric tensor in R then gives the orthonormal basis carried by an observer in R

$$
\vec{e}_{\hat{t}}=\frac{1}{\sqrt{c^{2}-r^{2} \omega^{2}}} \vec{e}_{t}, \vec{e}_{\hat{r}}=\vec{e}_{r}, \vec{e}_{\hat{\theta}}=\frac{\sqrt{1-r^{2} \omega^{2} / c^{2}}}{r} \vec{e}_{\theta}+\frac{r \omega / c^{2}}{\sqrt{1-r^{2} \omega^{2} / c^{2}}} \vec{e}_{t} .
$$

Uniformly accelerated reference frames

Consider a particle moving along a straight line with velocity u and acceleration $a=\frac{d u}{d T}$. Rest acceleration is \hat{a}.

$$
\begin{equation*}
\Rightarrow \quad a=\left(1-u^{2} / c^{2}\right)^{3 / 2} \hat{a} . \tag{3.32}
\end{equation*}
$$

Assume that the particle has constant rest acceleration $\hat{a}=g$. That is

$$
\begin{equation*}
\frac{d u}{d T}=\left(1-u^{2} / c^{2}\right)^{3 / 2} g . \tag{3.33}
\end{equation*}
$$

Which on integration with $u(0)=0$ gives

$$
\begin{align*}
& u=\frac{g T}{\left(1+\frac{g^{2} T^{2}}{c^{2}}\right)^{1 / 2}}=\frac{d X}{d T} \\
& \Rightarrow \quad X=\frac{c^{2}}{g}\left(1+\frac{g^{2} T^{2}}{c^{2}}\right)^{1 / 2}+k \\
& \Rightarrow \quad \frac{c^{4}}{g^{2}}=(X-k)^{2}-c^{2} T^{2} \tag{3.34}
\end{align*}
$$

This equation describes a hyperbola in the Minkowski diagram.

Figure 3.8: Hyperbolically accelerated reference frames are so called because the loci of particle trajectories in space-time are hyperbolae.

The proper time interval as measured by a clock which follows the particle:

$$
\begin{equation*}
d \tau=\left(1-\frac{u^{2}}{c^{2}}\right)^{1 / 2} d T \tag{3.35}
\end{equation*}
$$

Substitution for $u(T)$ and integration with $\tau(0)=0$ gives

$$
\begin{align*}
\tau & =\frac{c}{g} \operatorname{arcsinh}\left(\frac{g T}{c}\right) \\
\text { or } \quad T & =\frac{c}{g} \sinh \left(\frac{g \tau}{c}\right) \tag{3.36}\\
\text { and } \quad X & =\frac{c^{2}}{g} \cosh \left(\frac{g \tau}{c}\right)+k
\end{align*}
$$

We now use this particle as the origin of space in an hyperbolically accelerated reference frame.

Definition 3.2.1 (Born-stiff motion)

Born-stiff motion of a system is motion such that every element of the system has constant rest length. We demand that our accelerated reference frame is Born-stiff.

Let the inertial frame have coordinates (T, X, Y, Z) and the accelerated frame have coordinates (t, x, y, z). We now denote the X-coordinate of the "origin particle" by X_{0}.

$$
\begin{equation*}
1+\frac{g X_{0}}{c^{2}}=\cosh \frac{g \tau_{0}}{c} \tag{3.37}
\end{equation*}
$$

where τ_{0} is the proper time for this particle and k is set to $\frac{-c^{2}}{g}$. (These are Møller coordinates. Setting $k=0$ gives Rindler coordinates).

Let us denote the accelerated frame by Σ. The coordinate time at an arbitrary point in Σ is defined by $t=\tau_{0}$. That is coordinate clocks in Σ run identically with the standard clock at the "origin particle". Let \vec{X}_{0} be the position 4 -vector of the "origin particle". Decomposed in the laboratory frame, this becomes

$$
\begin{equation*}
\vec{X}_{0}=\left\{\frac{c^{2}}{g} \sinh \frac{g t}{c}, \frac{c^{2}}{g}\left(\cosh \frac{g t}{c}-1\right), 0,0\right\} \tag{3.38}
\end{equation*}
$$

