Lecture 11 19.02.18
Non-integrability of a simultaneity curve in a rotating frame

We have made a separation of the spacetime line-element, ds*, in a spatial part, d/*, and a
temporal part, c*dt?, according to ds* =dI*> —c’dt?, where

dlzz(gij——giogjonx’dxj , dfzaf—goo(dxo+hdxj » Xo=Ct.
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As applied to the rotating reference frame R this gives
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Here dt=0 means simultaneity in the non-rotating laboratory system, F, and df =0
simultaneity in the rotating frame, R. The simultaneity of the laboratory frame is defined
globally, but simultaneity in the rotating frame, R, is only defined locally. With df =0 we get
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which is not a total differential. This means that simultaneity in the rotating frame R cannot
be defined around a closed curve about the axis. If define simultaneous events in R along a
circle about the axis, we come to progressively later events in F as given by the formula for
dt above. Going around the circle we arrive at the point of departure at a later event than
the one we started from. This means that the 3-space defined by simultaneity in R does not
represent a simultaneity space in F. In a Minkowski diagram with reference to F the 3-space
is shaped as shown in the figure below. It has a discontinuity.
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Orthonormal basis field in the rotating frame

We saw in Lecture 9 how the spatial metric representing a simultaneity space of an

observer with 4-velocity ¢ was defined in terms of orthogonal basis vectors, where the

time-like basis-vector was chosen to be the 4-velocity of the observer. It has a magnitude c.

Let us define an orthonormal basis vector field co-moving with an observer at rest in an

arbitrary reference frame. The 4-velocity of the observer is 4. We choose as time-like unit

basis vector

é,=(1/c)u.

We shall express the orthonormal basis vectors in terms of the co-ordinate basis vectors in a

c-ordinate basis {¢,,€,,¢,,6,} where & is parallel to &, and the spatial vectors need not be

orthogonal to the time-like basis vector.

As shown in Lecture 9 a spacelike basis vector e, may be separated in one component
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along e, and one ¢, =¢ —¢, orthogonal to ¢, i.e.

Since this vector has a magnitude |, | =1féu ‘€, =\/;/T, the corresponding unit vector is

éf = (7/;‘/‘ )71/2 [éf _ZAEOJ .
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The second and third space-like vectors in the orthonormal basis are then given by
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Let us now consider the rotating reference frame, R. The coordinate transformation is
T=t , R=r , O=0+wt , Z=z

Hence the transformation from the coordinate basis vectors in F to those in R are

Note that even if T=t the basis vectors e, and e, have different directions. The vector field

e, is directed along the world lines of the particles in F that are parallel to the cylinder axis in



the figure above while the vector field e, is directed along the world lines of the particles in

R which has the spiral shape given by #=constant shown in the Figure. The simultaneity
space in F are the horizontal planes orthogonal to e,, and the simultaneity space in R is a

succession of simultaneity spaces locally orthogonal to e, .

In order to find the orthonormal basis carried by an observer in R by means of the
formulae above, we must first find the components of the 4-velocity in the co-moving
coordinate system in R. Since the observer is at rest in R, the time component is the only
non-vanishing component. It follows from the line element in R as applied to a clock at rest
that the 4-velocity is
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Inserting the expressions for the components of the metric tensor and the spatial metric
tensor in R then gives the orthonormal basis carried by an observer in R
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Uniformly accelerated reference frames

Consider a particle moving along a straight line with velocity v and acceleration
a = %. Rest acceleration is a.

= a=(1-u¥) (3.32)

Assume that the particle has constant rest acceleration @ = g. That is
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Which on integration with «(0) = 0 gives
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This equation describes a hyperbola in the Minkowski diagram.



Figure 3.8: Hyperbolically accelerated reference frames are so called because
the loci of particle trajectories in space-time are hyperbolae.

The proper time interval as measured by a clock which follows the particle:
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Substitution for «(7") and integration with 7(0) = 0 gives
c (!JT)
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or T = Zsinh (QT) (3.36)
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We now use this particle as the origin of space in an hyperbolically accelerated
reference frame.

Definition 3.2.1 (Born-stiff motion)
Born-stiff motion of a system is motion such that every element of the system has
constant rest length. We demand that our accelerated reference frame is Born-stiff.

Let the inertial frame have coordinates (7', X,Y,Z) and the accelerated
frame have coordinates (f.x.y.z). We now denote the X-coordinate of the
“origin particle” by Xp.
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where 7 is the proper time for this particle and k is set to =¢=. (These are

Mgller coordinates. Setting k = 0 gives Rindler coordinates).

Let us denote the accelerated frame by Y. The coordinate time at an ar-
bitrary point in ¥ is defined by ¢+ = 79. That is coordinate clocks in ¥ run
identically with the standard clock at the “origin particle”. Let X be the posi-
tion 4-vector of the “origin particle”. Decomposed in the laboratory frame, this
becomes
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Xo = {(— sinh g_‘ = (cosh L _ 1) 10, O} (3.38)
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