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Lecture 11 19.02.18 

Non-integrability of a simultaneity curve in a rotating frame 

We have made a separation of the spacetime line-element, 2ds , in a spatial part, 2dl , and a 

temporal part, 2 2ˆc dt , according to 2 2 2 2ˆds dl c dt  , where 
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As applied to the rotating reference frame R this gives 
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Here 0dt   means simultaneity in the non-rotating laboratory system, F, and ˆ 0dt   

simultaneity in the rotating frame, R. The simultaneity of the laboratory frame is defined 

globally, but simultaneity in the rotating frame, R, is only defined locally. With ˆ 0dt   we get 
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which is not a total differential. This means that simultaneity in the rotating frame R cannot 

be defined around a closed curve about the axis. If define simultaneous events in R along a 

circle about the axis, we come to progressively later events in F as given by the formula for 

dt  above. Going around the circle we arrive at the point of departure at a later event than 

the one we started from. This means that the 3-space defined by simultaneity in R does not 

represent a simultaneity space in F. In a Minkowski diagram with reference to F the 3-space 

is shaped as shown in the figure below. It has a discontinuity. 
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Orthonormal basis field in the rotating frame 

   We saw in Lecture 9 how the spatial metric representing a simultaneity space of an 

observer with 4-velocity u  was defined in terms of orthogonal basis vectors, where the 

time-like basis-vector was chosen to be the 4-velocity of the observer. It has a magnitude c.  

   Let us define an orthonormal basis vector field co-moving with an observer at rest in an 

arbitrary reference frame. The 4-velocity of the observer is u . We choose as time-like unit 

basis vector  

 0̂
1 /e c u . 

We shall express the orthonormal basis vectors in terms of the co-ordinate basis vectors in a 

c-ordinate basis  0 1 2 3, , ,e e e e  where 0e  is parallel to u , and the spatial vectors need not be 

orthogonal to the time-like basis vector.   

   As shown in Lecture 9 a spacelike basis vector ie  may be separated in one component  
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Since this vector has a magnitude i i i iie e e      , the corresponding unit vector is 
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The second and third space-like vectors in the orthonormal basis are then given by 
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   Let us now consider the rotating reference frame, R. The coordinate transformation is 
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Hence the transformation from the coordinate basis vectors in F to those in R are 
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Note that even if T t  the basis vectors Te  and te  have different directions. The vector field 

Te  is directed along the world lines of the particles in F that are parallel to the cylinder axis in 
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the figure above while the vector field te  is directed along the world lines of the particles in 

R which has the spiral shape given by constant   shown in the Figure. The simultaneity 

space in F are the horizontal planes orthogonal to Te , and the simultaneity space in R is a 

succession of simultaneity spaces locally orthogonal to te . 

   In order to find the orthonormal basis carried by an observer in R by means of the 

formulae above, we must first find the components of the 4-velocity in the co-moving 

coordinate system in R. Since the observer is at rest in R, the time component is the only 

non-vanishing component. It follows from the line element in R as applied to a clock at rest 

that the 4-velocity is 
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Inserting the expressions for the components of the metric tensor and the spatial metric 

tensor in R then gives the orthonormal basis carried by an observer in R 
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Uniformly accelerated reference frames 

 

This equation describes a hyperbola in the Minkowski diagram.  



4 
 

  

 



5 
 

 

 

 

 

 

 

 

 

 

 


