Lecture 12. 20.02.1018

In the following we shall need the Lorentz transformation expressed in terms of the velocity
parameter, 0. The Lorentz transformation between two orthonormal basis sets with a
relative velocity v is given by the matrix
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The velocity parameter is defined by
v=ctanhdg,
Giving
y =coshf , )/%zsinhe

Hence as expressed in terms of the velocity parameter the Lorentz transformation takes the form

coshd sinh@ 0 0
sinh@ coshd 00
0 0 10
0 0 01

Consider an event P which is simultaneous with an event P, at the origin particle in the accelerated
frame X (see Figure 3.9).
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Figure 3.9: Simultaneity in hyperbolically accelerated reference frames. The

vector X lies along the “simultaneity line” which makes the same angle with the
X-axis as does €; with the c¢T-axis.



The components of the distance vector from Py to P as decomposed in an orthonormal basis co-
moving with the origin particle is X =(0,%,7,Z), where X,y and 2 are physical distances measured

simultaneously in X . The space co-ordinates in ¥ are defined by

~

X ,y=sy ,z

X z.

The position vector of P is X = Xo+X. The relationship between basis vectors
in IF and the comoving orthonormal basis is given by a Lorentz transformation
in the x-direction.
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where 6 is the rapidity defined by
o
tanh 8 = — (3.41)
-
Uy being the velocity of the “origin particle”.
1X t
Uy = 220 _ ctanh gt
1o ¢ (3.42)
- gt

C



. gt . . gt
= &7 cosh — + €x sinh —
c c

€f

. L., gt gt

¢+ = e sinh = + €y cosh 7 a4
¢ = CT . X . (3.43)
€y = €y

s = Cy

The equation X = Xy + X can now be decomposed in IF:
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This then, gives the coordinate transformations
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Now dividing the last two of the above equations we get
T X t
97 = (1 + g_z) tanh 2- (3.45)
c c c

showing that the coordinate curves t = constanté are straight lines in the T, X-
frame passing through the point T = 0, X = —%. Using the identity cosh?®# —

showing that the coordinate curves x = constant are hypebolae in the T,X-

diagram.

sinh?# = 1 we get
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