Lecture 12. 20.02.1018

In the following we shall need the Lorentz transformation expressed in terms of the velocity parameter, θ. The Lorentz transformation between two orthonormal basis sets with a relative velocity v is given by the matrix

$$
\left(\begin{array}{llll}
\gamma & \gamma \frac{v}{c} & 0 & 0 \\
\gamma \frac{v}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { where } \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

The velocity parameter is defined by

$$
v=c \tanh \theta
$$

Giving

$$
\gamma=\cosh \theta, \quad \gamma \frac{v}{c}=\sinh \theta
$$

Hence as expressed in terms of the velocity parameter the Lorentz transformation takes the form

$$
\left(\begin{array}{cccc}
\cosh \theta & \sinh \theta & 0 & 0 \\
\sinh \theta & \cosh \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Consider an event P which is simultaneous with an event P_{0} at the origin particle in the accelerated frame Σ (see Figure 3.9).

Figure 3.9: Simultaneity in hyperbolically accelerated reference frames. The vector $\widehat{\vec{X}}$ lies along the "simultaneity line" which makes the same angle with the X-axis as does $\vec{e}_{\hat{t}}$ with the cT-axis.

The components of the distance vector from P_{0} to P as decomposed in an orthonormal basis comoving with the origin particle is $\hat{\vec{X}}=(0, \hat{x}, \hat{y}, \hat{z})$, where \hat{x}, \hat{y} and \hat{z} are physical distances measured simultaneously in Σ. The space co-ordinates in Σ are defined by

$$
x \equiv \hat{x}, y \equiv \hat{y}, \quad z \equiv \hat{z} .
$$

The position vector of P is $\vec{X}=\vec{X}_{0}+\hat{\vec{X}}$. The relationship between basis vectors in IF and the comoving orthonormal basis is given by a Lorentz transformation in the x -direction.

$$
\begin{align*}
\vec{e}_{\hat{\mu}} & =\vec{e}_{\mu} \frac{\partial x^{\mu}}{\partial x^{\hat{\mu}}} \\
& =\left(\vec{e}_{T}, \vec{e}_{X}, \vec{e}_{Y}, \vec{e}_{Z},\right)\left(\begin{array}{cccc}
\cosh \theta & \sinh \theta & 0 & 0 \\
\sinh \theta & \cosh \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{3.40}
\end{align*}
$$

where θ is the rapidity defined by

$$
\begin{equation*}
\tanh \theta \equiv \frac{U_{0}}{c} \tag{3.41}
\end{equation*}
$$

U_{0} being the velocity of the "origin particle".

$$
\begin{align*}
U_{0} & =\frac{d X_{0}}{d T_{0}}=c \tanh \frac{g t}{c} \tag{3.42}\\
\therefore \theta & =\frac{g t}{c}
\end{align*}
$$

$$
\begin{aligned}
& \vec{e}_{\hat{t}}=\vec{e}_{T} \cosh \frac{g t}{c}+\vec{e}_{X} \sinh \frac{g t}{c} \\
& \vec{e}_{\hat{x}}=\vec{e}_{T} \sinh \frac{g t}{c}+\vec{e}_{X} \cosh \frac{g t}{c} \\
& \vec{e}_{\hat{y}}=\vec{e}_{Y} \\
& \vec{e}_{\hat{z}}=\vec{e}_{Z}
\end{aligned}
$$

The equation $\vec{X}=\vec{X}_{0}+\hat{\vec{X}}$ can now be decomposed in IF:

$$
\begin{align*}
& c T \vec{e}_{T}+X \vec{e}_{X}+Y \vec{e}_{Y}+Z \vec{e}_{Z}= \\
& \quad \frac{c}{g} \sinh \frac{g t}{c} \vec{e}_{T}+\frac{c^{2}}{g}\left(\cosh \frac{g t}{c}-1\right) \vec{e}_{X}+\frac{x}{c} \sinh \frac{g t}{c} \vec{e}_{T}+x \cosh \frac{g t}{c} \vec{e}_{X}+y \vec{e}_{Y}+z \vec{e}_{Z} \tag{3.44}
\end{align*}
$$

This then, gives the coordinate transformations

$$
\begin{aligned}
T & =\frac{c}{g} \sinh \frac{g t}{c}+\frac{x}{c} \sinh \frac{g t}{c} \\
X & =\frac{c^{2}}{g}\left(\cosh \frac{g t}{c}-1\right)+x \cosh \frac{g t}{c} \\
Y & =y \\
Z & =z \\
\Rightarrow \quad \frac{g T}{c} & =\left(1+\frac{g x}{c^{2}}\right) \sinh \frac{g t}{c} \\
1+\frac{g X}{c^{2}} & =\left(1+\frac{g x}{c^{2}}\right) \cosh \frac{g t}{c}
\end{aligned}
$$

Now dividing the last two of the above equations we get

$$
\begin{equation*}
\frac{g T}{c}=\left(1+\frac{g X}{c^{2}}\right) \tanh \frac{g t}{c} \tag{3.45}
\end{equation*}
$$

showing that the coordinate curves $\mathrm{t}=$ constant are straight lines in the T, X frame passing through the point $\mathrm{T}=0, \mathrm{X}=-\frac{c^{2}}{g}$. Using the identity $\cosh ^{2} \theta-$ $\sinh ^{2} \theta=1$ we get

$$
\begin{equation*}
\left(1+\frac{g X}{c^{2}}\right)^{2}-\left(\frac{g T}{c}\right)^{2}=\left(1+\frac{g x}{c^{2}}\right)^{2} \tag{3.46}
\end{equation*}
$$

showing that the coordinate curves $\mathrm{x}=$ constant are hypebolae in the T, X diagram.

