
1 
 

Lecture 15. 05.03.2018  

Example 4.1.12. The acceleration of a velocity field representing rigid rotation 

The velocity field is 

ˆv r e e
    

Note that the co-ordinate component of the velocity is not equal to the physical velocity component. 

The physical velocity components are those in an orthonormal basis. 

 

We shall calculate the acceleration field, 
dv

a
dt

 . Using the chain rule of differentiation we get 

v dx v
a v

x dt x




 

 
 
 

 

Since the only non-vanishing velocity component is v   we get 

v
a 







. 

This gives 

  2e e
a  


 

 

 
 

 
. 

We have found earlier that 

cos sin , sin cosr x y x ye e e e r e r e        . 

Differentiation gives 

ˆcos sinx y r r

e
r e r e re re  




      


. 

Hence the acceleration is 

2
r̂a r e  . 

This is the centripetal acceleration for circular motion. 
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Letting  ˆ ,ix x y  be Cartesian coordinates with orthonormal basis vectors we shall here use the 

formula 

ˆ2

ˆ

x x

x x x

 


   

 
 

  
 

to calculate the Christoffel symbols in a polar co-ordinate system, with   ,ix r  . 
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Parallel transport 
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The covariant Euler-Lagrange equations 
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We shall later show that it is a consequence of Einstein’s field equations that 

free particles (i.e. particles acted upon only by gravity in Newtonian terms) 

follow geodesics curves in spacetime. 
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