Lecture 15. 05.03.2018
Example 4.1.12. The acceleration of a velocity field representing rigid rotation

The velocity field is

V= rafé =we,
Note that the co-ordinate component of the velocity is not equal to the physical velocity component.

The physical velocity components are those in an orthonormal basis.

I _ dv . . . I
We shall calculate the acceleration field, a = E . Using the chain rule of differentiation we get
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Since the only non-vanishing velocity component is v’ =@ we get
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a=w0—-:.
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This gives

We have found earlier that
€ =cosde, +sinde, , e,=-rsinbe, +rcosbe,.
Differentiation gives
oe,

—f%=_—rcos@e, —rsinfe =—re =—re,.
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Hence the acceleration is
— 24
a=—rw'e;.

This is the centripetal acceleration for circular motion.



Letting {xf}:x,y be Cartesian coordinates with orthonormal basis vectors we shall here use the

formula

@ ox” ox“ox”

to calculate the Christoffel symbols in a polar co-ordinate system, with {x’}: r,o.
Example 4.2.1 (The Christoffel symbols in plane polar coordinates)

r=rcost, y = rsinf
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Parallel transport

The geometrical interpretation of the covariant derivative was given by Levi-
Civita.

Consider a curve S in any (eg. curved) space. It is parameterized by A, ie.
xt =M (N). A is invariant and chosen to be the curve length.

The tangent vector field of the curve is u = (dz#/d\)é,. The curve passes
through a vector field A. The covariant directional derivative of the vector field
along the curve is defined as:

1A 1a¥
O = an, S, = an e, (4.27)
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The vectors in the vector field are said to be
connected by parallel transport along the curve
if

Al WY =0

oY

Definition 4.3.1 (Geodesic curves)
A geodesic curve is defined in such a way that,the vectors of the tangent vector field
of the curve is connected by parallell transport.

This definition says that geodesic curves are ’as straight as possible’.

If vectors in a vector field JT()\) are connected by parallell transport by a dis-
placement along a vector @ , we have A%, u¥ = (. For geodesic curves, we then
have:

ut,u” =0 (4.30)
which is the geodesic equation.
(v, + T, u™)u” =0 (4.31)
Then we are using that % = ‘ig\ igy =uY @gu :
du” _ u”au“ = u’ut, (4.32)



The geodesic equation can also be written as:

Tut
T+ Dhauta” =0 39
N e .4
Usual notation: "= i
1t
ut — % G (43—1)
d
G4 TH i3 = UI (4.35)

4.4 The covariant Euler-Lagrange equations

(Geodesic curves can also be defined as curves with an extremal distance between
two points. Let a particle have a world-line (in space-time) between two points
(events) Py and Ps. Let the curves be described by an invariant parameter \
(proper time 7 is used for particles with a rest mass).

The covariant Euler-Lagrange equations
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Figure 4.2: Different world-lines connecting P; and P in a Minkowski diagram



The Lagrange-function is a function of coordinates and their derivatives,
L = L(a# i), it = ——. (4.36)

(Note: if A = 7 then 7 are the 4-velocity components)

The action-integral is § = [ L(a#,i#)d\. The principle of extremal action
(Hamiltons-principle): The world-line of a particle is determined by the condi-
tion that S shall be extremal for all infinitesimal variations of curves which keep
P, and P rigid, ie.

Az
(5/ L(2", ")d\ = 0, (4.37)
A
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where A\ and Ay are the parameter-values at P; and P». For all the variations

the following condition applies:

St () = da*(N2) =0 (4.38)
We write Eq. (4.37) as
A2 A2 AL L
5 / Ld\ = ] [ St 4 f_azirﬂ] )\ (4.39)
A A, LOTH Ok
Partial integration of the last term
Az 9L L _ 1 [ d (0L
ditd\ = x| — — | = St dA 4.4
f,\l oar " {O;ir“ ! } N /,\1 D) (ai«u) o (+40)
Due to the conditions dz#(\y) = dz#(Ag) = 0 the first term becomes zero. Then
we have : \
2T oL d (0L
‘»9 p— - —— Yt 4 x4
’ ],\1 L};ru d\ (E‘);i‘“” ot (4.41)

The world-line the particle follows is determined by the condition 65 = 0 for
any variation dx#. Hence, the world-line of the particle must be given by

oL d (0L
- — =0 4.42
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These are the covariant Euler-Lagrange equations.

We shall later show that it is a consequence of Einstein’s field equations that
free particles (i.e. particles acted upon only by gravity in Newtonian terms)
follow geodesics curves in spacetime.



A free particle in space-time (curved space-time includes gravitation) has
the Lagrange function
L =—-1 -'_1'. '#_1 H Y 4.45
= Gu = gadt = oguati (4.45)

An integral of the Lagrange-equations is obtained readily from the 4-velocity
identity:

i, i# = —c® for a particle with rest-mass
. : (4.46)
it =0 for light
The line-element is:
ds® = g datda” = g, i*i"d\? = 2Ld\* . (4.47)

Thus the Lagrange function of a free particle is obtained from the line-element.



