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Lecture 16. 06.0503.2018 

The equation of a time-like geodesic curve is deduced from a variational 

principle which says that if there are two fixed points P1 and P2 in space-

time, then there exists an open subset of space-time containing these 

two points such that among all curves contained in this open subset, the 

geodesic will be the curve of longest length between these two points. 

   So, the variational principle says that timelike geodesics maximizes length 

among all curves in space-time nearby the geodesic.  

   There exist non-geodesic curves between two events far away from the 

geodesic curve between the events, along which a particle following the curve 

may have larger proper time between the events that a particle following the 

geodesic curve. Consider for example a clock at rest outside the Earth 

compared to a clock moving freely along a circular path, and calculate the 

proper time between two meetings of the clocks. (An exact calculation requires 

the Schwarzshild  spacetime.)  

   I have not seen a general theorem telling which time-like curve represent 

maximal proper time between two events in general. 
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Example. Vertical free fall in a uniformly accelerated reference frame 

The Lagrange function of the particle is 
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where the dot denotes differentiation with respect to the proper time   of the freely falling particle. 

This gives 
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Hence the Euler-Lagrange equation 
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takes the form 
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A first integral of this equation is the 4-velocity identity which in the present case takes the form 
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Since the metric is static the momentum  
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is a constant of motion. Its value is determined by the initial condition. Inserting the expression for t  

into the 4-velocity identity gives 
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Assume that the particle is falling from rest at an initial position 0x x , i.e.  0 0x x  . Hence 
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Inserting this into the 4-velocity identity gives after a short calculation 
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which gives 
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or 
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Note that we did not use the Euler-Lagrange equation to find the position of the particle as a function 

of its proper time. It was sufficient to use the 4-velocity identity and a constant of motion. This is 

often the case. 


